
OpenLineage: from 
Operators to Hooks





Agenda

● What is OpenLineage
● OpenLineage Airflow Integration
● Getting Lineage From Hooks
● Peek into the future?



What is Data Lineage?

Data lineage is the set of complex 
relationships between datasets 
and jobs in data pipelines.

● Producers & consumers of 
each dataset

● Inputs and outputs of each 
job



What problems Data Lineage solves

● Holistic view on data flowing 
through organization

● Security and Compliance

○ A German bank suffered data 
breach from vendor - but 
was wholly unaware that PII 
data was being send there.

○ Prod data send to dev env

● Impact analysis - pipeline failed, 
which other datasets it affects



6



Working with data in 2024



To define an open standard 
for the collection of lineage 
metadata from pipelines as 
they are running.

Mission:



Analysis Tools
Schedulers Warehouses

SQL Engines

The Data World Without OpenLineage



Analysis Tools
Schedulers Warehouses

SQL Engines

https://openlineage.io/ecosystem

The Data World With OpenLineage



Why runtime?

…or you can capture it 
when the image is 
originally created!

You can try to infer the 
date and location of an 
image after the fact…

rocks

26m until 
sunset

haze



Metadata producers Metadata consumers

OpenLineage Integrations



OpenLineage Contributors



Astro Observe



Astro Observe



OpenLineage 
Airflow Integration



What does it do



What does it do



2.7 AIP53 Implementation
● OpenLineage is part of Airflow since 2.7+ introduced in AIP53
● Part of implementation happens in Operators
● START, COMPLETE, FAIL states are exposed via different 

get_openlineage_facets_* methods returning OperatorLineage class

Ex. on BigQueryToGCSOperator



How does it work
● OpenLineage Provider has listener that gets called by Airflow by Listener API

○ On worker, before task runs, and after task completes or fails
● Checks if Operator has implemented lineage methods, calls them
● Enrich data returned from Operator with common Airflow facets
● More on that in last yearʼs presentation https://youtu.be/SZBVgREqets



Supported Operators
https://airflow.apache.org/docs/apache-airflow-providers-openlineage/stable/supported_classes.html
Caveat - does not make sense for OpenLineage to cover all Operators

https://airflow.apache.org/docs/apache-airflow-providers-openlineage/stable/supported_classes.html


Is this enough?



Airflow Survey 2023 results 



How people use Airflow?



TaskFlow API



Object Storage



Letʼs look at another DAG
Airflow 2.9.3



Letʼs look at another DAG
Airflow 2.9.3



The problem: arbitrary code

● People love writing their own code!
● Non-code operators: we generally 

know what they do (*) 
● Code operators: can be anything!
● Is there anything we can do?



Instrument the hooks



What are hooks?

● Hooks - a mechanism for 
communicating with external 
systems

● Operations on hooks closely 
resemble those exposed by external 
systems

● Ex. copy file between object storage 
buckets, execute SQL on some 
database, or even create a 
Kubernetes job



How to instrument hooks?

● We canʼt copy the “pullˮ approach 
we have for Operators

● One method vs many methods
● We can “pushˮ it from the 

instrumented method
● Where to?



What does the instrumentation look like?

● Added HookLineageCollector on 
Worker with .add_input_dataset and 
.add_output_dataset methods

● Those methods accept dataset_kwargs 
that are used to construct the compliant 
dataset later

● Methods in hooks that modify datasets 
call those methods to register dataset 
changes

● Data is then deduplicated - we donʼt 
want to see hundreds of writes to same 
dataset



What does the instrumentation look like?

● Object Storage: track reads 
and writes across file-like 
objects 

● No additional 
instrumentation needed for 
different types of paths



Works only if you use it 

● Not OpenLineage specific - you 
can write your own plugin, 
register HookLineageReader and 
use the gathered hook lineage 
for your own purposes

● If there are no 
HookLineageReaders, the 
.add_input_datasets and 
.add_output_datasets just send 
data to /dev/null



AIP60 compliant datasets

● Operators donʼt always work on datasets they know - GCSToS3Operator
● Object Storage does not explicitly know what the file is, it operates on 

abstract files
● AIP60 Dataset is an URI, OpenLineage dataset is name+namespace
● Providers know the dataset abstractions they own
● Providers can provide good factory method for AIP60 URI, and how to 

translate it to OpenLineage dataset



Same Object Storage DAG in Airflow 2.10



Same Object Storage DAG in Airflow 2.10



Lineage For Python Tasks

● It does not matter how you author your Python tasks, it captures hook 
lineage whether you use PythonOperator, TaskFlow or Custom Operators

● However, it has to be the same process as worker - python-based 
KubernetesOperator job wonʼt work



Peek into the future
As in, whatʼs happening with OL in Airflow 3?



Datasets Assets

● Despite all those changes, not everything can be detected.
● OpenLineage integration will be able to take advantage of that and 

expose annotated lineage



Datasets Assets



Synergy

● Building on Airflow - using Connections, Hooks, Assets, Object 
Storage gives you much more than using Airflow as a “dumbˮ 
scheduler



AIP72 Task Execution Interface

● Decoupling access to database from Worker requires us to rework 
approach for integration

● Below diagram wonʼt be accurate: worker after completion will 
send metadata using AIP72 interface, and OL will process it 
asynchronously



AIP72 Task Execution Interface

● Gains:
○ Async event emission: does not block a worker slot
○ Isolated execution: wonʼt affect worker if some bug happen
○ Possible to enrich the data more due to asynchronous 

execution
● However, itʼs possible that contributing OpenLineage Operator 

implementations will get more complex



What AIP72 enables



Related event: 
OpenLineage Meetup

Where
Astronomer
8 California St.

When

Thursday, 9/12
69 pm

Join us for in-depth 
talks & discussion over 
dinner!

Agenda
● Unlocking Data Products with OpenLineage at 

Astronomer: Julian LaNeve and Jason Ma, 
Astronomer.

● OpenLineage: From Operators to Hooks by Maciej 
Obuchowski, Astronomer+GetInData/Xebia.

● Activating Operational Metadata with Airflow, Atlan 
and Openlineage by Kacper Muda, GetInData/Xebia.

● Hamilton, a Scaffold for all Your Python Platform 
Concerns (and a New OpenLineage Producer) by 
Stefan Krawczyk

● Lightning Talk on New Marquez Features and the 
Marquez Project Roadmap by Willy Lulciuc, Marquez 
Lead, and Peter Hicks, Marquez Committer.

Get more details and the signup link at https://openlineage.io/blog



Thank you!
Any questions?



Bonus slides



Consistent API introduction

● Adding new APIs is easy, right?
○ Add new method to Airflow Core
○ Make providers use it
○ Release it all
○ Then it breaks on older versions of Airflow 



Consistent API introduction

● Adding new APIs is easy, right?
○ Add new method to Airflow Core
○ Make providers use it
○ Release it all
○ Then it breaks on older versions of Airflow 

● Make provider check Airflow version, and perform an action only if version 
matches the requirement
○ Requires potentially a lot of duplicated work across providers



Consistent API introduction

● Adding new APIs is easy, right?
○ Add new method to Airflow Core
○ Make providers use it
○ Release it all
○ Then it breaks on older versions of Airflow 

● Make provider check Airflow version, and perform an action only if version 
matches the requirement
○ Requires potentially a lot of duplicated work across providers

● Airflowʼs solution: common.compat provider
○ Introduce a method within compat provider
○ Method should perform version check, and have fallback for older 

version


