How we use
Airflow at Booking
to orchestrate Big
Data workflows

Madhav Khakhar - Senior Software Engineer, Booking.com
Alexander Shmidt - Senior Software Engineer, Booking.com
Mayank Chopra - Senior Technical Product Manager, Booking.com

Agenda

Booking.com Introduction
Migration & Modernization
Workflow Management Platform
Shifting to Astronomer

Q&A

Booking.com

e Largest online travel company
in the world

e Originally only offered Il
accommodation bookings, A place to call home]
currently offering a wide range ??Votl:rj:ﬁf’(tta:"{“yt r:
of travel related services |
(connected trip).

e To accommodate this, we are
in the middle of a data
modernization program.

Booking.com

(= stays) > Fiights @ Flight + Hotel R At
5 (3
g

Book a holiday rental

+ ¥
g 1adult - 0 children - 1room v m

=) san Francisco, California, United States X Tue 10 Sept — Thu 12 Sept

("] rm looking for flights

] Booking.com

Premiere Online Travel Retailer

100M+ >1500 XXX PB

e 100M+ monthly active e 150+ Data Engineers e ~100 TB ML inference
users e 350+ Data Scientists & ML events per day
e 24/7 operations Engineers e Many PT of data
e 1000+ Analysts e Very LARGE on-prem

Hadoop

WORKFLOW MIGRATION

Workflows - old stack

Hadoop, Oozie, Apache Spark on Kubernetes

CrhErbEp ChErbED

HDFS HEFS

®: ©

~ Jdb
ClhErbnp S
Ingestion storage data Asset Mngmt permissions
S - e.I!||e.ai ~ Spor‘l‘zz
Y —lle
B e (A dbt [
data warehouse Data Catalog orchestrator Data Query

3 i B.
%OIS OD
DAS & DVS SDK

Data Availability & compute Read/write library OpenlLineage
Oiiality

Data

k‘?fiq @ DAM OMMUTA

~, b
ClhEebED S
Ingestion storage data Asset Mngmt permissions
o ellie s
slolz l'| ;
ar =i
.l!..

data warehouse Data Catalog

Orchestration & ETL

A

R

orchestrator

Data Query

SDK

Read/write library

DAS & DVS

Data Availability &
Quality

oD

OpenlLineage

compute

Workflow Management Platform
(Orchestrator Platform)

WFM Platform Design

Workflow
Owner

»
L jo
7 y

workflow.yaml
Workflows Def

Data Availability Service

Airflow as the scheduler

Operators

Gitlab Cl —p» @ —

workflow.py
DAG files

v

,<

Data Compute Service Booking Kubernetes Service (BKS)

S3 Data Lake

db

s3-sync sidecar

AN

Snowflake

How we setup the Airflow installation

e Used Airflow community helm chart as the base
e Adapted it to deploy on Booking kubernetes
service (BKS)

o Booking Sidecars to support service discovery, S2S
authentication and authorization

o s3-sync sidecar to sync workflow.py DAG files from S3 to
Airflow

o Fluentbit sidecar to ship triggerer logs to Opensearch
(Kibana)

Airflow as the scheduler

—R—
X

Workflow

{.} workflowyam| =

interval: daily
namespace: traintomigrate

region:
- bk-eks

dataAssets:
uses:
- name: "sample_data_asset"
version: "1.0"
materialization: hive.bdx.

steps:
- name: aggregate
template: pyspark

config:
mainPythonFileUri: aggrega
packages:
pip:
- bkng-bdx [spark]
- pendulum
args:

- "~-nominal_date"

- "{{ data_interval_star
- "-~filter_date"

- "{{ macros.ds_add(ds,

dataAssets:
publishes:
- name: “traintomigrate.
version: "1.0"
materialization: hive.
production_mode: full_
period: DAY
36

definition (

sample_data_asset.sample_test_data_v1

te.py

E P

-1)

sparktraining@829.ant"

bdx.traintomigrate.sparktraining®829_ant_v1
refresh

first glimpse)

workflow.yaml
Workflows Def

Workflow definition (Why?)

e Abstraction for users

o Writing a workflow.yaml instead of a python DAG
o Not having to worry about internals of how a computation job runs

e Standardized templates
o Platform team owns the templates

e “Pluggable” Airflow Backend
e Ease of enabling governance

Workflow.py on Airflow

{.} workflowyaml &

36

interval: daily
namespace: traintomigrate

region:
- bk-eks

dataAssets:
uses:
- name: "sample_data_asset"
version: "1.0"
materialization: hive.bdx.sample_data_asset.sample_test_data_vl

steps:
- name: aggregate
template: pyspark

config:
mainPythonFileUri: aggregate.py
packages:
pip:
- bkng-bdx [spark]
= pendulum
args:

- "--nominal_date"

“{{ data_interval_start }}"
"—~filter_date"

- "{{ macros.ds_add(ds, -1) }}"

dataAssets:
publishes:
- name: “traintomigrate.sparktraining@829.ant"
version: "1.0"

materialization: hive.bdx.traintomigrate.sparktraining®829_ant_v1

production_mode: full_refresh
period: DAY

[@) traintomigrate-spark-ant-bk-eks

B crid I () Calendar R Task Duration

m 2024-08-27T13:25:50+0% Runs 25 v

ComputeV10perator | | DasV2PublishOperator | | DasV2WaitOperator

—»

workflow.yaml|
Workflows Def

Run

2 Task Tries L\ Landing Times = Gantt A\ Details <> Code B Audit Log

manual__2024-08-27T11:25:49+00:00

aggregate

[wait_for_data_assets]—O.—i[pyspark H publish_data_assets]

—— Gitlab Cl—) @ ———————s3-sync sidecar —

workflow.py
DAG files

(scheduled up_for_resche

|/

Workflow Steps - Deferrable Operators

e All step templates are Deferrable

Operators
o Typically make API calls to do a POST
o And then waiting for completion (GET calls)

e Helps us scale better (lightweight Alrflow as the scheduler

workers)
o Actual polling happens inside the triggerers >

Operators T

Airflow as pure orchestrator

e Integrations

o Data Availability
o Data Compute Service

. Data Availability Service
e Actual computation runs on |
Spark on kubernetes / _’x
snowflake (dbt) J

3 Data Lake

o -
0
L.

Data Compute Service Booking Kubernetes Service (BKS)

Ve
AY

o

Snoy

£

ake

Workflow Access

e One access policy fora
collection of workflows

e Users login via Okta, get access
to specific workflow DAGs

x Airflow DAGs Security Browse Admin

Show Role

Detail List Users

Name com.booking.services.bkng_workflows.shared.prod.traintomigrate

[can create on DAG Runs, can edit on Task Instances, can delete on Task Instances, can
workflow-bk-uk, can edit on DAG:traintomigrate-training-workflow-bk-aws-uk, can read

com.booking.services.bkng_workflows.shared.prod.traintomigrate / * / staff / * Request Access

Policy information Policy owners ~ Rules Users Related policies isati Logs tools h
'q
TARGET @ com.booking.services.bkng_workflows.shared.prod.traintomigrate
ACTION @ *
SUBJECT @ com.booking.entity.staff
OBJECT @ *
CRITICALITY @ None
DESCRIPTION @
Type of Service: application
Type of permission: This policy is used to manage access to traintomi in shared ion of workflows.
Workflows are our scheduled jobs to run data and machine learning tasks at scale.
Workspace is a collection of related workflows for example all workflows that needed by one team or one project.
Targeted users: anyone that wants to use trair i in shared ir of workflows, mostly users that need to process
bigdata on cloud (ML Engineers, ML scientists, Data engineers, Data analysts)
x Airflow DAGs Security Browse Admin Docs 10:28 CEST (+02:00) ™M
Show Role
Detail List Users
< 3 4 5 6 7 > - Pagesizer || € Record Count: 3
FirstName Last Name Is Active?
1 1 User Name I Email 1 1 Role
[Public, Viewer, com.booki bkng_workflows.shared.prod.sf d
m.booking.services.bkng_workflows.shared.prod.
alze Gawav Aggarwal om ng.com True om.booking. bkng_workflows.shared.prod.dwh.t
book bkng workflows.shared.

com.booking.services.bkng_workflows.shared.prod.sfpg.workflows]

[]
wo r k I I ow AI e rtl n def send_failure_alert(context):
dag_id = context['dag'].dag_id
task_id = context['task'].task_id
execution_date = context['ts']
exception = context.get('exception', context.get('reason', ''))

text = f"Execution failed for workflows: {dag_id} Step: {task_id} Exception: {exception}"
send_alert(dag_id, task_id, execution_date,text,exception)

def send_alert(dag_id, task_id, execution_date,text,exception=None):

:
e [ntegration to AlertAPI
. . workflow = dag_id
logs_url = f"/log?dag_id={dag_id}&task_id={task_id}& tion_date={urllib. .quote(tion_date)}"
(Booking internal tool) e e S e

"name": f"persona.b_bkng-workflows_airflow.workflows.{workflow}.{execution_date}",
"msg_type": 1, # MSG_TYPE_IN_ALERT

. B Oi | e rp Iate Cod e to Se n d "msg_text": f"{text} Airflow logs: {logs_url}",

"refdata" : {
"workflow": workflow,

failure alerts e
e Users can subscribe to alerts

"logs_url": logs_url

-

1

112 success_callback_functions = []
113 failure_callback_functions = [send_failure_alert]

114

115 def generate_dag_callback(callback_functions):

116 def execute_callback_functions(context):

117 for function in callback_functions:

118 function(context)

119 return execute_callback_functions

120

121 default_args = dict(

122 depends_on_past=False,

123 retries=1,

124 retry_delay=timedelta(minutes=5),

125 provide_context=True,

126 execution_timeout=timedelta(hours=24, minutes=random.randint(12,20)),
127 retry_exponential_backoff=False,

128 on_success_callback=generate_dag_callback(success_callback_functions),
129 on_failure_callback=generate_dag_callback(failure_callback_functions),
130 sla=None,

131)

129

Shifting to Astronomer

WFM Platform - Astronomer-powered

Workflow
Owner

workflow.yaml
Workflows Def

‘g
N Data Availability Service
(R Astro

Airflow as the scheduler

Operators
\ J \ _’ —) —<

Data Compute Service

S3 Data Lake

Booking Kubernetes Service (BKS)
Gitlab Cl —» @ Cl push

workflow.py
DAG files

—»a‘o p‘

Snowflake

Why?

What changes?

Learnings

Shifting to Astronomer: Why?

Internal adoption of Airflow rapidly grows

Takes care of reliability (uptime, on-call)

Easy upgrade to newer Airflow versions

Easy [auto]scaling

Support engineers

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems

Service-to-service authentication
DAG deployment flow
User access

Infra-as-code

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems
Service-to-service authentication

DAG deployment flow

User access

Infra-as-code

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems

Service-to-service authentication
DAG deployment flow
User access

Infra-as-code

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems

Service-to-service authentication

DAG deployment flow

User access (A paro

Airflow as the scheduler

Airflow as the scheduler
> J

—)@ s3-sync sidecar _’@_ CI pUSh

workflow.py workfloyv.py
DAG files DAG files

Infra-as-code

-~

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems

Service-to-service authentication
DAG deployment flow
User access

Infra-as-code

|/

Shifting to Astronomer: What changes?

Network integration for accessing internal systems

Service-to-service authentication
DAG deployment flow

User access

Infra-as-code

Shifting to Astronomer: Learnings

Doing a proof-of-concept of integrating a vendor into your infrastructure
helps uncover a lot of small issues you often don't think about after using
internally-streamlined deployment and communication processes.

Do cost analysis of different architectural decisions for your use case,
as yours might be different from a “typical” one

Questions?

Linkedin - Madhav Khakhar
Linkedin - Alexander Shmidt
LinkedIn - Mayank Chopra

