
Adaptive
Memory
Scaling for
Robust Airflow
Pipelines

Cyrus Dukart, David Sacerdote &
Jason Bridgemohansingh

What we are talking about today

1. Who we are
2. Our Data Challenge
3. Our solution

Who we are?

Vibrant Planet
The first common operating picture for
wildfire & ecosystem resilience

Increasingly hotter fires
Catastrophic effects to soils and streams

Caldor Fire:
Lake Tahoe,
2021

Individual tree health to forest resilience
Using Synthetic Canopy Height Models to Segment individual Trees

Individual tree health to forest resilience
Using Synthetic Canopy Height Models to Segment individual Trees

2018

2020

 Credit: Steve Rondeau, Natural Resources Director of the Klamath Tribes

The answer:
Speeding and scaling
what we know works

What we use Airflow for

ML
Models

Transformations

Fire Treatment
Recommendations

Our Data Challenge?

Airflow Executor Options

vs

How Airflow allocates resources

Our
Partitioning
Scheme

Variable
Memory
Reqs

Dynamic Task Mapping

@task()
def add(x: int):
 logging.info(f“Running for {x}”)

expansion_example = add.expand(x=[1, 2, 3])

Dynamic Task Mapping

Dynamic Task Mapping

24

The Challenge

What’s in a k8s pod spec
● Contains a full description of the environment and

resource limits

 resources:
 limits:
 cpu: '12'
 memory: 24Gi
 requests:
 cpu: '12'
 memory: 24Gi

Example Task w Executor Config Override
from kubernetes.client import models as k8s

@task(
 executor_config={
 "pod_override": k8s.V1Pod(...)
 }
)
def do_something():

print(“my resources were customized!”)

Tuning Hell

Conductor
Dag

DagDagDag

50

Landscape A
Landscape B

Landscape C

OOM

OOM

Tune Memory
Request

Tune Memory
Request

Our Solution

Make Self Healing Pipelines

TRY 1OOM!
TRY 2OOM!

TRY 3

Double
Resources

Double
Resources

SUCCESS!

Solution: Mutate Pod Executor Config

from kubernetes.client import models as k8s

def update_task_instance_pod_override(
 ti: TaskInstance,
 executor_config: Dict[str, V1Pod]
) -> None:
 with create_session() as session:
 ti.executor_config = executor_config
 session.add(ti)
 ti.refresh_from_db()

Solution: Example Executor Config
executor_config ={
 "pod_override": k8s.V1Pod(
 spec=k8s.V1PodSpec(
 containers=[
 k8s.V1Container(
 name="base",
 resources=k8s.V1ResourceRequirements(
 requests=K8sResources(cpu="4", memory="8Gi"),
 limits=K8sResources(cpu="4", memory="8Gi"),
),
)
],
),
)
}

Solution: Example Dag

@dag()
def example_dag():

 @task(
 retries=3,
 on_retry_callback=double_memory()
)
 def failing_task():
 raise ValueError("Failing to Memory Ramp")

https://docs.google.com/file/d/1-UuB9H0z8VaMRZjd31B2EJeg698mAz2e/preview

But wait there’s more

What about initial Memory Allocation

36

The Problem

Set Initial Resources per TI

TRY 2OOM!
TRY 3OOM!

TRY 4

Double
Resources

Double
Resources

SUCCESS!
TRY 1

Auto Fail

Logs

Init
Resources

Implementation: first try fail

[2024-02-23, 23:41:01 UTC] {vp_python.py:202} INFO - Running with the following memory settings:
[2024-02-23, 23:41:01 UTC] {vp_python.py:203} INFO - Total memory from Executor Config: 9.0 GiB
[2024-02-23, 23:41:01 UTC] {vp_python.py:206} INFO - Total memory available: 9.0 GiB
[2024-02-23, 23:41:01 UTC] {vp_python.py:209} INFO - Total memory limit on process: 8.1 GiB
[2024-02-23, 23:41:01 UTC] {airflow_helpers.py:200} INFO - Recommending default memory for huc12_id =
[2024-02-23, 23:41:01 UTC] {airflow_helpers.py:435} INFO - Setting Memory for Executor Config to: 4.0
GiB
[2024-02-23, 23:41:02 UTC] {airflow_helpers.py:498} INFO - ###########################
[2024-02-23, 23:41:02 UTC] {airflow_helpers.py:499} INFO - # EXPECTED FIRST TRY FAIL #
[2024-02-23, 23:41:02 UTC] {airflow_helpers.py:500} INFO - ###########################

Because we can’t set memory allocation before we run, the first attempt to run
any task is automatically failed as a means of setting the correct amount of
memory

How we make an initial estimate
Task Run before? Data (HUCs) Run

Before? Action

✅ ✅ Allocate prior memory
consumption + safety

margin

✅ ❌
Run a linear regression

to estimate memory
needs; add safety

margin

❌ ❌ Make a guess that
works for a lot of tasks

Custom Decorator

@task.vp
def save_the_forest():
 from utils.forest_save import forest_saver_2000
 forest_saver_2000()

We implement this using a custom decorator, @task.vp

Custom Decorator Goodies

1. Stats Logging
2. Initial Memory Recommendation
3. Memory Ramp on Retry
4. OOM Detection

Q&A

Appendix

Self Healing Pipelines
(OOM Resilience)

OOM detection and retry
OOM frequently results in a process death with no direct
notification

So we wrap our tasks in a parent process which detects
OOM situations and kicks off a retry with double the amount
of memory

This parent process also collects memory and CPU
utilization statistics during process execution and logs
them to a database upon completion.

Small job optimization

Jobs with low memory needs (eg: smaller than the
memory-estimation stub) get launched inside the same
pod and memory footprint of the memory-estimation
stub, rather than needing a failure and retry. This
reduces both both the time and expense of running
them.

Short-running jobs are often batched together, avoiding
the overhead of launching new containers.

