
DAGify - Enterprise
Scheduler Migration
Accelerator
Konrad Schieban, Strategic Cloud Engineer, Google

Tim Hiatt, Staff Technical Solutions Consultant, Google

DAGify Team

2

Introduction

3

What are we solving?
● Large Cloud Migrations often involve migrating enterprise workflow

management systems.
● Enterprises have desire to move away from these systems when migrating

to the Cloud.
● Migrating these workflows to Apache Airflow (e.g. on Cloud Composer)

may require 1000’s of human hours to convert proprietary scheduler
formats to Python code.

● A burden that is too great for organizations to consider at scale.

4

Introducing DAGify

● Convert exported workflow
configuration from XML to Python
Code for Airflow.

● Highly extensible with minimal to no
code modification. Conversion
controlled using YAML files.

● Open Source and encourages
community collaboration.

● Provides a report that provides
summary of the conversion and
which job types could not be
migrated.

5

https://goo.gle/dagify-github

https://github.com/GoogleCloudPlatform/dagify

Show me DAGify!

6

<JOB
JOBISN="0" APPLICATION="application-xx"
SUB_APPLICATION="australia-region" MEMNAME="app-xx-aus-reg-001"
JOBNAME="app-xx-aus-reg-001-daily" DESCRIPTION="Daily Application Run
Australia Region" CREATED_BY="Google PSO Demo App"
RUN_AS="gpso_user" PRIORITY="AA" CRITICAL="0" TASKTYPE="Command"
CYCLIC="0" NODEID="gcp.pso.demo.app.google.com" INTERVAL="00001M"
CMDLINE="exebatch.sh aus.google.com daily" CONFIRM="0" RETRO="0"
MAXWAIT="0" MAXRERUN="0" AUTOARCH="0" MAXDAYS="0" MAXRUNS="0"
WEEKDAYS="1,2,3,4,5" JAN="1" FEB="1" MAR="1" APR="1" MAY="1" JUN="1"
JUL="1" AUG="1" SEP="1" OCT="1" NOV="1" DEC="1" DAYS_AND_OR="O"
SHIFT="Ignore Job" SHIFTNUM="+00" SYSDB="0" JOBS_IN_GROUP="00000"
IND_CYCLIC="S" CREATION_USER="gpso_user"
CREATION_DATE="20160112" CREATION_TIME="103502"
CHANGE_USERID="emp8" CHANGE_DATE="20170714"
CHANGE_TIME="181328" RULE_BASED_CALENDAR_RELATIONSHIP="O"
APPL_TYPE="OS" MULTY_AGENT="N" USE_INSTREAM_JCL="N"
VERSION_OPCODE="N" IS_CURRENT_VERSION="Y" VERSION_SERIAL="3"
VERSION_HOST="gcp.online.com" CYCLIC_TOLERANCE="0"
CYCLIC_TYPE="C" PARENT_FOLDER="gcp-pso-core-apps">
 <VARIABLE NAME="%%SCRIPT_DIR" VALUE="/data/scripts/aus-scripts" />
 <VARIABLE NAME="%%DATE" VALUE="%%$YEAR-%%MNTH-%%DAY" />
 <SHOUT WHEN="NOTOK" URGENCY="V" DEST="ECS" MESSAGE="%%
failed, Needs Investigation" />
 <INCOND NAME="dependent-job-xxx-1" ODATE="ODAT" AND_OR="A" />
 <OUTCOND NAME="task-complete-flag" ODATE="ODAT" SIGN="+" />
</JOB>

import airflow
from airflow import DAG
from airflow.contrib.operators.ssh_operator
import SSHOperator,ComputeEngineSSHHook

with DAG(
 dag_id= "JOB_DC_ONE" ,
 start_date=datetime.datetime(2021, 1, 1),
) as dag:
DAG Tasks
 JOB_APP_XX_AUS_REG_001_DAILY = SSHOperator(
 task_id= 'JOB_APP_XX_AUS_REG_001_DAILY' ,
 ssh_hook=Compute Engine SSH Hook(
 instance_name=UNKNOWN,
 zone=UNKNOWN,
 project_id=UNKNOWN,
 use_oslogin= True,
 command= "exebatch.sh aus.google.com
daily",
 dag=dag)

Input Source Workflow Definitions Output Native Python DAG for Airflow

DAGify under the hood

7

Field
Field

Field

Conversion Template Files (YAML)

Source Field
Source Field
Source Field
Source Field
Source Field

Target Field
Target Field

Target Field

DAGify Conversion Engine

DAGify Rules Engine

DAGify Report Engine

DAGify Engine Configuration File (YAML)

Source 2 Target
Field mappings

Field Level Conversion
Rules

DAG Operator
Output Format

Output DAG Files and
Conversion Report

Universal DAGify
Format

Parse Source Format files
into DAGify universal

format

Universal format is fed
into the DAGify Engine

Source Object to Target
Object template mapping

DAGify Engine
DAGify is available as CLI tool that developers run from source or using a
Container. For conversion of XML files, it executes the DAGify Engine.

8

Contain the source to
target mappings for
conversions

DAGify team and
community contributed

YAML formatted for
simplicity and extensibility
and easy management of
native python packages
and version

Templates

I log in to the environment via
command line (CLI)

Small centralized python
functions applied as on a
per field mapping

Provided in DAGify
template applied during
conversion

Community extensible and
highly customizable easily
testable

Rules Engine

User defined source type
to template mapping

YAML format for
simplicity.

Samples and defaults
provided out of the box
with DAGify

Configuration Files

Captures detailed logs
across the end to end
conversion process

Detailed report output with
all the captured details

Provides developers with
information on outstanding
task and conversion
challenges

Reporting Engine

The DAGify Engine

Feature Overview

9

DAG Dividers
If you have a large Control-M XML file you may consider splitting the Airflow tasks
into multiple DAGs. DAGify has a command line parameter -d or --dag-divider which
specifies by which XML attribute jobs should be divided by.

Examples:

./DAGify -d FOLDER

./DAGify -d APPLICATION

./DAGify -d SUB_APPLICATION

DAGify uses ExternalTaskSensors and ExternalTaskMarkers to implement

dependencies.

10

Cross-DAG Dependencies

11

-d FOLDER_NAME will generate a single DAG

-d APPLICATION or -d SUB_APPLICATION
will generate two DAGs

Cross-DAG Dependencies

12

Scheduler Migration

13

In Control-M each job can have its own schedule to run.
In Airflow, the schedule is set at the DAG level, meaning all tasks within a DAG will adhere to the
same schedule.

Create Multiple DAGs: The most straightforward solution is to create separate DAGs for tasks
that need different schedules. Each DAG can have its own schedule_interval.

DAGify will convert the Control-M task schedule to a Cron expression and write it into the DAG
definition.

Attention: DAGify will only take the schedule from the first job that it finds per dag and write it
into the DAG definition.

Reporting Engine

14

DAGify’s reporting engine allows the generation of reports in txt and in JSON format.

DAGify will for instance report on

- amount of operations that it knows how to migrate
- amount of operations that it does not know how to migrate
- types of operations that it has found in the Control-M file
- the templates that are used for the conversion

Reporting Engine

15

Demo

16

17

https://docs.google.com/file/d/1bqKyLfpwsnQDTLRpayWQWhKVvWx92Rzv/preview

18

https://docs.google.com/file/d/1BBHK3BkXC3EcsrVkX6zbT9cCV8q6iCab/preview

Questions?
Contact:
● linkedin.com/in/konrad-schieban-1730b986
● kschieban@google.com

Blog: https://goo.gle/dagify-blog
Github: https://goo.gle/dagify-github

Blog

Github

http://linkedin.com/in/konrad-schieban-1730b986
mailto:kschieban@google.com
https://goo.gle/dagify-blog
https://goo.gle/dagify-github

