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Airflow’s usage evolution



Operational challenges

1. Task Isolation 

2. Dependency Management

3. Airflow Upgrades at scale



Current Airflow architecture
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Architectural decoupling:                                 
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Key Benefits
Task Isolation leading to an improved security posture

- Particularly important for shared deployments with varied data access
- Especially when connection information is directly stored in metaDB

Independent versioning of Python dependencies between Tasks
- Less need for KubePodOperator

Independent Python version upgrades from Airflow server
- Platform administrators vs. Data teams



Python based local execution

Airflow system components
- Web Server now includes an API Server

Airflow Python Task SDK
- Separate distribution 
- Provider interfaces / dependencies



Wait, do I have to re-write every one of my DAGS?!

Of course not

from airflow import DAG

becomes

from airflow.sdk import DAG

etc. 

Airflow Task SDK



Standard Execution Code + Demo



https://docs.google.com/file/d/1sFNgbS73bBFak1hDCmN3HjW7Zrtc0YE5/preview


Task Execution Interface

Includes Task Context:
- Connections 
- Env variables / Secrets
- XCom input data

Includes Task Status:
- Task completion status
- Task Heartbeat
- Reading and writing XCom data
- Logs and Metrics

Whatʼs not allowed:
- Direct access Airflow metadatabase



One more thing …



Run anywhere

Main k8s cluster

Airflow runtime components

UI Scheduler WorkerWorkerWorkers

Remote clusters, with local workers

WorkerWorkerWorkers

Cloud Data Sources

WorkerWorkerWorkers

Enterprise Data 
Center

Remote / Edge execution: run tasks on 
workers in remote clusters

Use cases
● Deployment flexibility with workers on 

public, hybrid, private cloud, on-prem, 
edge, GPU clouds

● Higher resilience and scalability

● Improved security isolation

● Easier upgrades, fewer dependencies

● Better meet data locality mandates



Python based remote execution
What needs to change in my DAG code?

What limitations exist? 

Note for AIP69 Remote / Edge Executor



Python Remote Worker



https://docs.google.com/file/d/1tLiXsLEhL3adUTIvK_IRRKlP0ZscEGxI/preview


And, one more …



Run in any language
Current languages supported 

Language support in 3.0

● Airflow 3 is language agnostic

● Software teams building data apps

○ Eg: Typescript

● Airflow 3 is also multi-lingual

○ Extract in Java
○ Transform in Python, SQL
○ Analysis using Scala
○ Incoming data into an Go app 



Golang Task SDK
What SDK do I use?

What does my Task code look like? 

What does my DAG code look like?



DAG running go Tasks – Airflow 2
@dag

def my_dag_with_go():

   extract = BashOperator(task_id="extract", bash_command="go run my_workflow.go extract", do_xcom_push=True)

   transform = BashOperator(task_id="transform", bash_command="go run my_workflow.go transform",

                            env={"order_data": extract.output}, do_xcom_push=True)

   @task

   def load(total_order_value: float):

       print(f"Total order value is: {total_order_value:.2f}")

   load(transform.output["total_order_value"])

my_dag_with_go()



DAG running go Tasks – Airflow 3
@dag

def my_dag_with_go():

   go = task.external(queue="my-go-queue")

   order_data = go.extract()

   order_summary = go.transform(order_date)

   @task()

   def load(total_order_value: float):

       print(f"Total order value is: {total_order_value:.2f}")

   load(order_summary["total_order_value"])

my_dag_with_go()



import "github.com/apache/airflow/go-sdk/sdk"

func extract(ctx context.Context, log *slog.Logger) (map[string,any], error) {

   val, err := sdk.GetVariable(ctx, "my_variable")

   if err != nil { return err }

   order_data_dict, ok := val.(map[string]any)

   if !ok { return nil, fmt.Errorf("Invalid variable data type") }

   return order_data_dict, nil

}

type OrderSummary struct { Total float64 `json:"total_order_value"`}

func transform(ctx context.Context, log *slog.Logger, order_data map[string]float64) (OrderSummary, error) {

   total := 0

   for _, n := range maps.Values(order_data) { total += n }

   log.Infof("Summed %d orders", len(order_data))

   return OrderSummary{total}, nil

}

import "github.com/apache/airflow/go-sdk/sdk"

func

   val, err := sdk.GetVariable(ctx, "my_variable")

type OrderSummary struct { Total float64 `json:"total_order_value"`}

   return OrderSummary{total}, nil

Tasks in Golang

http://github.com/apache/airflow/go-sdk/sdk


Running a Golang worker
import "github.com/apache/airflow/go-sdk/worker"

func registerTasks(worker worker.Worker) {

   worker.RegisterTask("tutorial_dag", extract)

}

func extract() error { … }

   // …

   worker := worker.New(logger)

   registerTasks(worker)

   worker.RunForever(context.TODO(), getServerUrl())



Golang Remote Worker



https://docs.google.com/file/d/1RUnXLSlHsi8jzseA9KDNJrZs2JVdGPco/preview


In Summary

We need you! 

Recruiting beta users:
- Deploying remote execution environments

Recruiting contributors for other languages:
- Add Providers for: Typescript, Scala, Kotlin, your language of choice!

Come speak at the next Airflow Summit about your use case on Airflow 3!


