
Running Tasks Anywhere
in Any language

Introduction

Vikram Koka
Chief Strategy Officer, Astronomer
Airflow Committer

Ash Berlin-Taylor
Airflow Committer & PMC Member
Engineering Leader @ Astronomer

Airflow’s usage evolution

Operational challenges

1. Task Isolation

2. Dependency Management

3. Airflow Upgrades at scale

Current Airflow architecture

DAG File
Processor(s)

Scheduler(s)

Web Server

Worker(s)

Airflow
Meta

Database

Architectural decoupling:
Task Execution Interface

DAG File
Processor(s)

Scheduler

Worker(s)

Airflow
Meta

Database
Web Server

API Server

Task SDKTask Execution
Interface

3.0

Key Benefits
Task Isolation leading to an improved security posture

- Particularly important for shared deployments with varied data access
- Especially when connection information is directly stored in metaDB

Independent versioning of Python dependencies between Tasks
- Less need for KubePodOperator

Independent Python version upgrades from Airflow server
- Platform administrators vs. Data teams

Python based local execution

Airflow system components
- Web Server now includes an API Server

Airflow Python Task SDK
- Separate distribution
- Provider interfaces / dependencies

Wait, do I have to re-write every one of my DAGS?!

Of course not

from airflow import DAG

becomes

from airflow.sdk import DAG

etc.

Airflow Task SDK

Standard Execution Code + Demo

https://docs.google.com/file/d/1sFNgbS73bBFak1hDCmN3HjW7Zrtc0YE5/preview

Task Execution Interface

Includes Task Context:
- Connections
- Env variables / Secrets
- XCom input data

Includes Task Status:
- Task completion status
- Task Heartbeat
- Reading and writing XCom data
- Logs and Metrics

Whatʼs not allowed:
- Direct access Airflow metadatabase

One more thing …

Run anywhere

Main k8s cluster

Airflow runtime components

UI Scheduler WorkerWorkerWorkers

Remote clusters, with local workers

WorkerWorkerWorkers

Cloud Data Sources

WorkerWorkerWorkers

Enterprise Data
Center

Remote / Edge execution: run tasks on
workers in remote clusters

Use cases
● Deployment flexibility with workers on

public, hybrid, private cloud, on-prem,
edge, GPU clouds

● Higher resilience and scalability

● Improved security isolation

● Easier upgrades, fewer dependencies

● Better meet data locality mandates

Python based remote execution
What needs to change in my DAG code?

What limitations exist?

Note for AIP69 Remote / Edge Executor

Python Remote Worker

https://docs.google.com/file/d/1tLiXsLEhL3adUTIvK_IRRKlP0ZscEGxI/preview

And, one more …

Run in any language
Current languages supported

Language support in 3.0

● Airflow 3 is language agnostic

● Software teams building data apps

○ Eg: Typescript

● Airflow 3 is also multi-lingual

○ Extract in Java
○ Transform in Python, SQL
○ Analysis using Scala
○ Incoming data into an Go app

Golang Task SDK
What SDK do I use?

What does my Task code look like?

What does my DAG code look like?

DAG running go Tasks – Airflow 2
@dag

def my_dag_with_go():

 extract = BashOperator(task_id="extract", bash_command="go run my_workflow.go extract", do_xcom_push=True)

 transform = BashOperator(task_id="transform", bash_command="go run my_workflow.go transform",

 env={"order_data": extract.output}, do_xcom_push=True)

 @task

 def load(total_order_value: float):

 print(f"Total order value is: {total_order_value:.2f}")

 load(transform.output["total_order_value"])

my_dag_with_go()

DAG running go Tasks – Airflow 3
@dag

def my_dag_with_go():

 go = task.external(queue="my-go-queue")

 order_data = go.extract()

 order_summary = go.transform(order_date)

 @task()

 def load(total_order_value: float):

 print(f"Total order value is: {total_order_value:.2f}")

 load(order_summary["total_order_value"])

my_dag_with_go()

import "github.com/apache/airflow/go-sdk/sdk"

func extract(ctx context.Context, log *slog.Logger) (map[string,any], error) {

 val, err := sdk.GetVariable(ctx, "my_variable")

 if err != nil { return err }

 order_data_dict, ok := val.(map[string]any)

 if !ok { return nil, fmt.Errorf("Invalid variable data type") }

 return order_data_dict, nil

}

type OrderSummary struct { Total float64 `json:"total_order_value"`}

func transform(ctx context.Context, log *slog.Logger, order_data map[string]float64) (OrderSummary, error) {

 total := 0

 for _, n := range maps.Values(order_data) { total += n }

 log.Infof("Summed %d orders", len(order_data))

 return OrderSummary{total}, nil

}

import "github.com/apache/airflow/go-sdk/sdk"

func

 val, err := sdk.GetVariable(ctx, "my_variable")

type OrderSummary struct { Total float64 `json:"total_order_value"`}

 return OrderSummary{total}, nil

Tasks in Golang

http://github.com/apache/airflow/go-sdk/sdk

Running a Golang worker
import "github.com/apache/airflow/go-sdk/worker"

func registerTasks(worker worker.Worker) {

 worker.RegisterTask("tutorial_dag", extract)

}

func extract() error { … }

 // …

 worker := worker.New(logger)

 registerTasks(worker)

 worker.RunForever(context.TODO(), getServerUrl())

Golang Remote Worker

https://docs.google.com/file/d/1RUnXLSlHsi8jzseA9KDNJrZs2JVdGPco/preview

In Summary

We need you!

Recruiting beta users:
- Deploying remote execution environments

Recruiting contributors for other languages:
- Add Providers for: Typescript, Scala, Kotlin, your language of choice!

Come speak at the next Airflow Summit about your use case on Airflow 3!

