
The Silent
Symphony
Keeping Airflow's CI/CD and Dev Tools
in Tune

Jarek Potiuk

● Independent Open-Source Contributor and advisor

● PMC Member & Committer Apache Airflow

● Member of the Apache Software Foundation

● Security Committee Member of the ASF

@jarekpotiuk

@potiuk

@jarekpotiuk

https://fosstodon.org/@jarekpotiuk

Agenda
● Airflow and orchestra

● Behind the scenes

● Unsung heroes for Airflow staying in tune

● Learnings for other projects

Airflow as Orchestrator

Airflow complexity
● Airflow Core (UI, Scheduler, Workers, Triggerers)

● 90+ providers (790+ dependencies)

● Container images

● Helm chart

● Python client

Orchestra

What makes things work (semi) smoothly

In the background: CI/CD
● static checks (pre-commits)
● documentation build
● testing:

○ units of code
○ integrations
○ upgrades
○ system tests
○ end-to-end tests
○ building artifacts (packages/images/charts)
○ backwards compatibility checks
○ lowest dependencies

● reproducible installation for users
● future-compatibility for dependencies

Unsung heroes: dev tools
● Make it easy to develop project

● Airflow has more than 3000 contributors

● Contributors vs Maintainers

● CI/CD to keep things in check

● Role of dev tools
○ help contributors to contribute

○ help maintainers to release

Dev Tools vs. CI

Two sides of the same coin
● CI / CD runs all the checks

● What happens when it fails?

● Reproducing the failures locally

● “Works for me” syndrome

● common test execution platform (790 dependencies)

● testing everything
○ Airflow, Providers, Container image, Chart, Client, Release process

Pre-commits

Pre-commits AKA static-checks
● leverage .git pre-commit hooks in a very efficient way
● can be installed with `pre-commit install`
● we have 130+ (!) pre-commits
● classic static checks (ruff and friends)
● maintaining single source of truth
● generating documentation and licences
● updating versions automatically
● preventing common mistakes (“first line of defence”)
● automates a LOT of stuff

Local Venv

Why venv ?
● Pros

○ Finally standards compliant (as of early 2024)
○ Easy to setup and connect to IDE
○ Easy to run and debug tests
○ Integration with build front-ends (hatch, poetry, …)
○ Anyone can use their own tooling
○ Pretty standard across multiple Python projects

● Cons
○ Providers (and 790 dependencies)
○ Various platform support (MacOS/Linux X86/ARM)
○ The “works for me” syndrome
○ Lack of reproducibility with CI

Breeze

Why breeze ?
● Python (dev/breeze) Docker-compose wrapper

● Avoids “works for me” syndrome

● CI Container image with ALL dependencies

● Easy to reproduce test / check runtime environment

● Same on CI and local dev

● Automate release manager’s job

● Base security checks (SBOMS/dependency analysis)

Breeze start-airflow
breeze start-airflow --load-example-dags --load-default-connections

So, it just works, right ?

Airflow 2 timeline

29

AirBnB
ASF
Incubator

ASF
Top Level
Project

Airflow 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

10th Anniversary this year

2.9 2.10

Good properties of CI/dev tooling
● As little flakes as possible

● Fast feedback time

● 100% reproducible locally

● As little build time as possible

● Canary warnings

What’s changing?

● New version of dependencies breaking things
● Refactors
● Growing number of tests
● Flaky tests
● New types of tests and rules
● Security hardening (reproducible builds)

https://docs.google.com/file/d/12Z8tUd2w-UOOLAQpR_sLsi5VF5jvyEB5/preview

Few days ago in a galaxy not far away …
Canary build

Why is this important ?

Nature of the job
● Low bus factor (~1.2 now)

● Very few people get involved

● Good reason (it should **just** work)

● Unfamiliar tooling

● Taking things for granted

● Complaints are often, gratitude is very rare

● Overall - it’s an extremely ungrateful job, easy to burn-out

Unsung heroes
● Amogh Desai
● Andrey Anshin
● Ash Berlin-Taylor
● Bowrna Prabhakaran
● Bugra Ozturk
● Edith Puclla
● Elad Kalif
● Ephraim Anierobi
● Hussein Awala
● Jarek Potiuk
● Jed Cunningham
● Kaxil Naik
● Pierre Jeambrun
● Rom Sharon
● Shahar Epstain
● … and more …

Security implications

● Security comes with dependencies

● With complex projects it becomes “full time” job

● Supply chain improvements

Learnings for other projects

● Combine CI/Dev tooling

● Make dev tooling/CI priority

● Encourage passionate contributors

Takeaways

● Learn from other projects

● Apply “no broken window” policy

● Make the world a bit “better” with every change

Q&A
@jarekpotiuk

@potiuk

@jarekpotiuk

https://fosstodon.org/@jarekpotiuk

