
Empowering Airflow Users:
A framework for performance
testing and transparent
resource optimization

Bartosz Jankiewicz
bjankiewicz@google.com

About me

Engineering Manager
Ex Cloud Composer

Bartosz Jankiewicz

Working with Airflow for ~3 years

Motivation

3

🤔

AIP-59
AIP-59 aims to define a testing framework for Apache Airflow.

tldr; Identify performance regressions by introducing regular performance
metrics collection mechanism into the Apache Airflow release and deployment
process.

4https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-59+Performance+tests+framework

Goals
Measure performance changes between Airflow
versions.

Identify and communicate changes that affect
performance, CPU, memory, disk usage or other key
performance characteristics.

Empower users to measure performance of their own
deployments.

��

��

��

Some real stories

⚠ Airflow memory
requirements in
Python 3.11 are 10%
higher compared to
Python 3.8

Airflow worker
memory
requirements in
Airflow 2.3 are 30%
higher compared to
workers in Airflow 2.2
or Airflow 2.1

Design
principles

7

����

Focus

Measure Airflow
components, not
third-party code

Extensibility

Support various
Airflow setups (Docker
Compose, Cloud Composer,
Kubernetes, etc.)

Configurability

Customize scenarios,
instances,
performance DAGs

How?

11

💡

Framework Components

Performance DAG Defines the test scenario (number of DAGs, tasks, task type, etc.)

Instance Defines the Airflow setup (number of schedulers, worker
resources, etc.) and metrics collection mechanism

Test suite Combines instance and performance DAG, sets
placeholder values

Performance DAG
Dynamically creates number of DAGs and tasks

Can be controller by environment variables. Some of them include:

- PERF_DAGS_COUNT - number of DAGs to generate
- PERF_TASKS_COUNT - tasks count in each DAG
- PERF_SHAPE - no structure, linear, grid, star, binary tree
- PERF_SLEEP_TIME - time of sleep occurring when each task is executed
- PERF_OPERATOR_TYPE - type of operator from predefined set

Instance is a state machine
● Test defines state machine inputs -

most importantly the instance type.
● Each instance implements

states_map method that defines
state machine transitions.

● Each state is associated with:
○ Transition to next state method
○ Retryable property
○ Sleep time

● State transition method returns
value of the next state.

🤖

Test life cycle example (simple version)

Instance
setup

Start

Metrics
collection

Tear
down

Save
result

DAG run

Create
cluster

Deploy
Airflow

Validate

Upload
DAG

Execute

Observe

Collect
metrics

Delete
cluster

Example

Happy path in (for Cloud Composer)

NONE
Wait
until
ready

Update
info

Deploy
stats

collector

Reset
environm

ent

Upload
DAG

Wait for
parsing

Unpause
DAG

Wait for
run

Collect
resultsDONE

● Set of metrics depends on environment type.
● Typical sources of metrics:

○ Cluster configuration including environment (scheduler count, workers count)
○ Airflow configuration (worker concurrency, parallelism, dag concurrency)
○ DAG run statistics (test duration, run count, min duration, max duration, task durations)
○ Cluster metrics (total cores, cores utilization, memory utilization, restart count)

● Exported to a CSV file

Metrics

Integration

19

How to use them?

CI/CD
*for some PRs

Performance
metrics
storage

upload

compare

Performance
reports

Release
process

Nightly
builds

Integration

Run tests as part of the build process, combine results with PR

Export metrics to a dedicated tabular storage

Review metrics during release process

Include results in the release documentation

Roadmap

22

Performance DAG

PR #41961 merged - includes
performance DAG code

PR for instance framework well
advanced

Instance framework

State machine implementation

Framework for collecting instance
metrics from Google Cloud
Logging

E2e solution

Framework for collecting
metrics from vanilla k8s

Ready for testing

Documented

Integration

Start integrating the solution
into daily builds

How can I contribute?

Collection of metrics from k8s or other solutions/clouds

Implementation of other than Composer/K8s instance machines

Reviewing the code

Questions?

