
Gen AI using Airflow 3

Introduction

Kaxil Naik
Airflow Committer & PMC Member
Engineering Leader @ Astronomer

Ash Berlin-Taylor
Airflow Committer & PMC Member
Engineering Leader @ Astronomer

The Changing AI Landscape
Why New Solutions Are Needed!

Evolving AI Landscape

Explosion of AI Models

Increased Focus on
Data Privacy & Control

GPUs
are easily accessible

Cost Optimization

Growing Complexity of
AI Workflows

Increasing Need for
Experimentation

RAG
Retrieval-Augmented Generation

What is RAG?
Typical Architecture for Q&A use-case using LLM

Data Store

Retrieval OutputStorageSplittingDocument Loading

Vectorstore

Database

PDFs

URLs

LLM <Answer>
Prompt

Splits

Relevant
Splits

Query
<Question>

RAG (Ingestion) as an Airflow DAG

Large data sets

Unstructured Data

Generate and Store
Embeddings

Dynamic Mapping for large number of incoming
datasets (website content, directories of files, .)

Reading, chunking, and Transformation
Python libraries and frameworks for above
Eg: Unstructured, LangChain, etc.

Using AI providers: Open AI, Cohere, etc.
Store into Weviate, PgVector, …

Ask Astro: Data Ingestion, Processing, and Embedding

■ Airflow gives a framework to load data
from APIs & other sources into LangChain

■ LangChain helps pre-process and split
documents into smaller chunks
depending on content type

■ After content is split into chunks, each
chunk is embedded into vectors (semantic
representations)

■ Those vectors are written to Weaviate for
later retrieval

Embed chunks Write to Weaviate
Pre-process and split into

chunks

🦜🔗 LangChain

Docs (.md)
files

Slack
Messages

GitHub
issues

Docs (.md)
files

RAG (Ingestion) as an Airflow DAG

Challenges

Python Dependencies

Selective GPU Execution

Dynamic model choice

Supporting varied Python configurations and
dependencies between tasks

Keeping main execution on CPUs, only
selectively call out to GPUs on remote clusters

Change LLM model in response to
cost/performance/new features

How Airflow 3 Helps

Solution part1 Task Execution Interface

Python dependencies:
- Different python dependencies for different tasks

Cost-optimal Task Execution:
- Data cleaning, Data transformation with CPUs
- Model training w/ GPU as needed - less than 10% of tasks in a DAG

Current Airflow architecture

DAG File
Processor(s)

Scheduler(s)

Web Server

Worker(s)

Airflow
Meta

Database

Architectural decoupling:
Task Execution Interface

DAG File
Processor(s)

Scheduler

Worker(s)

Airflow
Meta

Database
Web Server

API Server

Task SDKTask Execution
Interface

3.0

Solution part2 common.llm

Selective model choice:
- Different model performance & accuracy
- Complexity vs. Cost & response time tradeoff
- Dynamic selection based on task requirements and constraints

AI provider selection:
- Based on execution environment (e.g., GPUs, CPUs)
- Data security constraints for external vs local models

Solution part2 common.llm

Solution part2 common.llm

Example Inference as an Airflow DAG

Rephrase the question

Submit and get results

Return results

Use both original and re-phrased versions

Query all versions of the question
De-duplicate the results

Optionally verify and rank the results
Return results with sources

AI SQL Assistant: Inference

Users enter a question in
Natural language in the AI

Assist Editor on the UI

■ Original prompt gets reworded 3x using gpt-3.5-turbo
■ DB Schema incl. table & column names & type is retrieved
■ Answer is generated by combining answers from each prompt

and making a gpt-4 call

🦜🔗LangChain

User Asks
a Question

Web App

Original Prompt Rewording 2

Rewording 1

Rewording 3

Reword to get more
related SQL queries

Vector DB search
with prompts

DB
DB schema + table
& column names

and col type

Combine and
make final LLM
call to answer

Challenges and upcoming enhancements

Batch-triggered Dag Runs
& Experimentation

Dynamic model choice

Synchronous DAG run

Eliminate the execution date constraint
Concurrent runs of the same DAG i.e.
non-data-interval DAGs.

commom.llm to dynamically change AI provider
and model

Inference DAGs return results upon completion
Trigger API to support synchronous execution

Batch-triggered Dag Runs
- Non-data-interval based: No reliance on execution dates or schedules.
- Ad-hoc invocation via API calls for inference allowing multiple instances to be

triggered by API calls at the same time.

Enables Experimentation
- Run the same DAG with different parameters simultaneously, independent of the

execution date.
- Ideal for AI/ML workflows like:

- Experiment with multiple models for embedding
- Retraining models
- Experimenting a new data source for RAG
- Hyperparameter tuning

Solution part3 Ad-hoc Dag Runs

Data Assets
- Dataset renamed to Data Asset to include Models, Reports, Embedding etc
- Versioned Assets: Improved experiment tracking & Iterative changes
- Enhanced UI support that allow visualization of “Data Asset Metadata .ˮ

- Example: RMSE value changes due to different parameters
- Audit: Every version of data assets can be audited and compared across

different experimental runs.

Solution part4 Experimentation Tracking

Solution part5 Synchronous DAG run

Consumer of Inference DAG runs need results:
- Current model: Final Task in DAG to store results in Blob storage
- Ideal to add API support for it
- Will support long-running DAGs, since timing is unpredictable

Example:
- Laurel: Automated timekeeping
- Does not require “real-time chatbot style responsesˮ

Other examples:
- Evaluation of mortgage applications

Solution part5 "Synchronous" DAG run

How Airflow 3 helps?

Explosion of AI Models

Increased Focus on
Data Privacy & Control

GPUs
are easily accessible

Cost Optimization

Growing Complexity of
AI Workflows

Increasing Need for
Experimentation

common.llm

Task Execution
Interface

common.llm

Ad-hoc Dag Runs

Data Assets

Task Execution
Interface

Sync. DAG run

In Summary

Many organizations already using Airflow for Gen AI applications

We need your feedback as we add these capabilities into Airflow 3
Recruiting beta users:

- Building Gen AI platforms and use cases

Come speak at the next Airflow Summit about your use case on Airflow 3!

