
Seeing Clearly with Airflow
Airflow Summit 2024

The Shift to Data-Aware Orchestration

TP Chung Staff Software Engineer
Constance Martineau Senior Product Manager

2014 2016 2019 2020

The Evolution of Apache Airflow

Created by
Airbnb

Apache
Incubator

Project

Apache
Top-Level

Project

Airflow 2.0
Release

As of September 2024 … 25-30M
3.4K
36.2K
45K

Monthly Downloads

Contributors

Github Stars

Slack Community

Airflow has been successful as a
workflow orchestrator by focusing on

tasks

https://www.statista.com/statistics/871513/worldwide-data-created/

Data Growth Worldwide

https://www.statista.com/statistics/871513/worldwide-data-created/

Task-Oriented Pipeline

Task-Oriented Pipelines Using Data-Aware
Scheduling

Asset-Oriented Pipelines

By shifting the focus from tasks to data
that is produced, Airflow can provide
block-level lineage and visibility into

data quality

Airflow is Evolving to Meet These Needs

AIP73 Expanding Data Awareness in Airflow

AIP74
Introducing Data

Assets

AIP75 New
Asset-Centric

Syntax
AIP76 Asset

Partitions

Data Assets

Renaming Dataset

Dataset → Data Asset

Data assets
Datasets: renamed, enhanced, and more integrated

Dataset renamed

The user-facing
class is renamed
to better describe
the concept and
avoid confusion.

Named resource

Assets no longer
requires a real
URI. They can
represent more
flexible ideas.

Custom grouping

New “groupˮ
specifier allows
for categorizing
assets logically
together.

UI improvements

Asset Views can
provide more
insights, and be
integrated more
with other views.

my_model = Asset(name="my_model", group="model")
past_info = Asset(name="past_info", group="dataset")
predictions = Asset(name="prediction", group="result")

@task(outlets=my_model)
def create_model():
 ...

@task(outlets=past_info)
def collect_info():
 ...

@task(inlets=[my_model, past_info], outlets=predictions)
def predict_1():
 # Use the model and available data to make a prediction...

New Definition Syntax

@asset(group="model")
def my_model():
 ...

@asset(group="dataset")
def past_info():
 ...

@asset(
 schedule=my_model | past_info,
 group="result",
)
def predictions(my_model, past_info):
 ...

Internally…
Three-in-one, but still the same concepts.

Itʼs a DAG.

More accurately, a

schedulable; on the

same level as a DAG.

Itʼs a task.

Like Python operator;

it executes the same

things in the function.

Itʼs an asset.

Decorated object can

track lineage and do

event triggering.

@asset(schedule="@monthly", group="model")
def my_model():
 ...

@asset(schedule="@hourly", group="dataset")
def past_info():
 ...

@asset(
 schedule=my_model | past_info,
 group="result",
)
def predictions(my_model, past_info):
 ...

...

@asset(
 schedule=my_model | past_info,
 group="result",
)
def predictions(my_model, past_info):
 model_path = ObjectStoragePath(my_model.uri)
 # ... load model from path ...

@asset Definitions vs. Good Olʼ Tasks

Assets donʼt write themselves!!
This is the same as a @task. The
definition only announces the
intention. Future work?

DAG-level definition
An @asset is a DAG-level
definition. It canʼt be a part of a
DAG. It is a schedulable entity.

Noun-based declaration
The @asset decorator defines the
asset and its materialization. No
separate instantiation.

Separate schedule and partition
Materialization is scheduled, but
logical dates and data intervals
donʼt apply to assets.

Partitions

Simple asset materialization

Asset
AssetAsset

Asset

Asset

Partitioned asset materialization

Partition

Partition

Partition

.

.

.

Partitions
How can an asset be partitioned?

Time-based

➔ Most common?

➔ Data every X

➔ Data interval

Data groups

➔ Categorization

➔ Give it an ID

➔ DAG expansion?

Serial number

➔ Time-based-ish

➔ A range

➔ Dynamically

PARTITION IS NOT NEW!
➔ All the same principles
➔ Reorganized to easier mental model
➔ Generalized for more use cases

Execution date

Run 1

α

Run 2

β

Run 3

γ

execution_date = α

Data interval

Run 1

α

Run 2

β

Run 3

γ

DataInterval(start=α, end=β)

Partition

Run 1

α

Run 2

β

Run 3

γ

PartitionKey(α, β)

Partition
How does the concept improve Airflow?

Simplified

No more run date vs

execution date

misunderstandings.

Generalized

Partition key does

not need to be a date

(or date range).

Independent

Partition does not

need to line up with

the run schedule.

Takeaways

1. Airflow is evolving to meet the needs of
modern data workflows

2. Data Assets and Partitions enable more
granular control and transparency

3. The Future of Orchestration is
Data-Centric

Thank you!
Any questions?

