
Airflow-as-an-Engine
Lessons from Open-Source Applications Built On Top of Airflow

Ian Moritz, Product @ Astronomer

How do teams
interact with Airflow?

The annual Airflow Survey has some opinions…

….one is that the Airflow adoption is incredible…

Source: 2024 State of Apache Airflow, 2023 & 2022 Airflow Survey

…and that teams using Airflow use it more and more over time

Source: 2024 State of Apache Airflow, 2023 & 2022 Airflow Survey

But we have a surprising
finding from the survey

about the users of
Airflow!

Source: 2023, 2022, 2020 Airflow Survey

* 2021 survey data not available

Demo

Data Engineers Engineering Professionals Data Professionals

~59% of Airflow users ~33% of Airflow users ~8% of Airflow users

Airflow & data engineering experts
who productionize data

Software, BI, DevOps, Analytics
engineers

Data analysts, sometimes data
scientists

Who are these users?

Source: 2024 Airflow Survey

Source: 2023, 2022, 2020 Airflow Survey

* 2021 survey data not available

Of Airflow users,
the percentage
of daily active

users has
decreased

Users who interact with
Airflow daily decreased
from 79% to 55% from

2020 2023

Weekly went from 16% to 26%, and Monthly or less
went from 5% to 18% in the same period

As Airflow adoption grows, some
new users are interacting with it less

For the audience:
any theories why?

One idea…
Beyond its use as an

orchestration platform, Airflow is
increasingly an orchestration

engine

Airflow as a Platform:
Users directly interact
with Airflow primitives
● DAG authoring & operator

management
Directly author DAGs and their tasks using
operators, sensors, etc.

● DevOps
Set up CI/CD, deployment strategies,
development lifecycles

● Monitoring & Infra Planning
Configure the characteristics of your Airflow
deployments, like executors, worker queues,
components resources, etc.

Other
providers

DAG
Authoring

Worker resource
allocation

Airflow infra
management

Airflow as an Engine:
Airflow is a “black box”
orchestrator to users
● Use-case first

Users spend most of their time in other
tools, and then “deploy” their code to run
on Airflow

● Infrequent direct DAG authoring
User frameworks compile configuration to
DAGs instead of directly authoring DAGs

● Airflow is frequently “abstracted
away”, user tools like the web
server are used less frequently
Sometimes, users don’t even know their tools
use Airflow under the hood

dbt x Cosmos

DAG Factories

Ingestion with dlt

Other
providers

Chronon ML
Feature Eng.

Demo

15

dlt - Data Ingestion Chronon - MLOps

DAGs generators are provided
for you, only occasional

changes needed

General-purposes framework for data
ingestion between sources and sinks

Framework for ML feature
management & observability

Three example OSS projects with the engine pattern

Astronomer Cosmos -
Data Transformation

Just one initialization DAG –
that’s it

Run and observe dbt in Airflow

Generate DAGs with their
CLI, instead of writing them

Demo

16

Astronomer Cosmos

Just one initialization DAG –
that’s it

Use and observe dbt in Airflow

dbt (Data Build Tool) Core is an open-source tool for
data transformations and analysis, using SQL

Growing in popularity as a standard
for sql analysts and data mart

builders

250 Contributors

6K Total Commits

6.5K GitHub Stars

17

dbt is the T in ELT. Organize, cleanse, denormalize, filter,
rename, and pre-aggregate the raw data in your

warehouse so that it's ready for analysis.

18

Cosmos

Just ~15 lines of initial code lets you translate from dbt to Cosmos

19

import os

from datetime import datetime

from pathlib import Path

from cosmos import DbtDag, ProjectConfig, ProfileConfig

from cosmos.profiles import PostgresUserPasswordProfileMapping

DEFAULT_DBT_ROOT_PATH = Path(__file__).parent / "dbt"

DBT_ROOT_PATH = Path(os.getenv("DBT_ROOT_PATH", DEFAULT_DBT_ROOT_PATH))

profile_config = ProfileConfig(

 profile_name="jaffle_shop",

 target_name="dev",

 profile_mapping=PostgresUserPasswordProfileMapping(

 conn_id="airflow_db",

 profile_args={"schema": "public"},

),

)

basic_cosmos_dag = DbtDag(

 project_config=ProjectConfig(

 DBT_ROOT_PATH / "jaffle_shop",

),

 profile_config=profile_config,

 schedule_interval="@daily",

 start_date=datetime(2023, 1, 1),

 catchup=False,

 dag_id="basic_cosmos_dag",

)

With Cosmos, you’re less frequently writing
DAGs after this initialization step

Demo

20

dlt

General-purposes framework for data
ingestion between sources and sinks

Generate DAGs with their
CLI, instead of writing them

dlt is an open-source Python library to load data from various and often
messy data sources into well-structured, live datasets

Growing as a Pythonic way to
perform data loads anywhere you

write Python

65 Contributors

3K Total Commits

2.3K GitHub Stars

21

dlt is the L in ELT.Load data from diȨerent SaaS products,
databases, and APIs into destinations

dlt provides tools to generate & deploy Airflow DAGs from source code

22

import dlt
from airflow.decorators import dag
from dlt.common import pendulum
from dlt.helpers.airflow_helper import PipelineTasksGroup

Modify the dag arguments
default_task_args = {
 'owner': 'airflow',
 'depends_on_past': False,
 'email': 'test@test.com',
 'email_on_failure': False,
 'email_on_retry': False,
 'retries': 0,

}

@dag(
 schedule=None,
 start_date=pendulum.datetime(2021, 1, 1),
 catchup=False,
 max_active_runs=1,
 default_args=default_task_args
)
def load_data():
 # Set `use_data_folder` to True to store temporary data on the `data` bucket.
 # Use only when it does not fit on the local storage
 tasks = PipelineTaskGroup("pipeline_name", use_data_folder=False, wipe_local_data=True)

 # Import your source from pipeline script
 from pipeline_or_source_script import source

 # Modify the pipeline parameters
 pipeline = dlt.pipeline(
 pipeline_name='pipeline_name',
 dataset_name='dataset_name',
 destination='duckdb',
 dev_mode=False # must be false if we decompose
)
 # Create the source, the "serialize" decompose option
 # will convert dlt resources into Airflow tasks.
 # Use "none" to disable it.
 tasks.add_run(
 pipeline,
 source(),
 decompose="serialize",
 trigger_rule="all_done",
 retries=0,
 provide_context=True
)

dlt deploy my_pipeline.py airflow-composer

A single CLI command…

…generates your DAG

23

Chronon

DAGs are provided for you,
only occasional changes

needed

Framework for ML feature
management & observability

Chronon is an open source feature platform that allows Machine Learning teams to
easily build, deploy, manage and monitor data pipelines for machine learning.

Backed by Airbnb and Stripe,
Chronon is a fairly new

open-source project

22 Contributors

850 Total Commits

704 GitHub Stars

24

Orchestration for Chronon involves running the various jobs to compute
batch and streaming feature computation, as well on online/offline

consistency measurement.

Chronon constructs dynamic DAGs for you– users just add their own Airflow
deployment

Enable backfills

Kick off streaming jobs

Consistency & data quality
checks

….and more

What do these autogenerated
DAGs do?

What are some lessons
we can learn from

Airflow-as-an-engine
use cases?

1 Not everyone is going to directly write DAGs… but theyʼll still
use Airflow!

Dag Factory

2 Airflow is maturing as a compute platform, allowing it to
directly manage previously third-party jobs

Platform Engine

Third Party Integration
DAGs

Compute-Focused DAGs

Over time, we’re seeing
growth here!

Many Airflow workloads
started here…

2 Airflow is maturing as a compute platform, allowing it to
directly manage previously third-party jobs

Some third-party job operators (especially for transformation & ingestion
workloads) can instead rely on Airflow to provide compute

3 There are high-potential ways of getting new workloads onto Airflow
with Airflow 3

AIP-85: Pluggable bundle parsingAirflow Today

New ways of parsing DAGs can
remove the need to write classic
Python DAGs for our workflows

Beyond its use as an
orchestration platform, Airflow

is increasingly an
orchestration engine

32

Thank you for
watching!

To reach out, I’m always
available at

ian.moritz@astronomer.io

33

Appendix

Sources
https://dlthub.com/blog/on-orchestrators
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-85+Extendable+DAG+parsing+control
s
https://airbyte.com/blog/data-orchestration-trends

https://dlthub.com/blog/on-orchestrators
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-85+Extendable+DAG+parsing+controls
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-85+Extendable+DAG+parsing+controls
https://airbyte.com/blog/data-orchestration-trends

