
Hello Quality: Building CIs to Run
Providers Packages System Tests

Freddy Demiane

Software Engineer
@Google Rahul Vats

Staff Software Engineer
@Astronomer Dennis Ferruzzi

OSS Developer
@AWS

2

The Problem

The Solution

Technical Deep Dive

Next Steps

Q/A

01

02

03

04

05

The Problem

3

Airflow System
Tests

Airflow System Tests are dags which
contain the operators and the flows we
want to test

4

Zoomed in

5

Pain Points

● Requires an understanding of the System Test
● Requires an infrastructure - sometimes expensive
● Requires proper set up

6

The Solution

7

System Test Dashboards

8

https://airflow.apache.org/ecosystem/#airflow-provider-system-test-dashboards

https://airflow.apache.org/ecosystem/#airflow-provider-system-test-dashboards
https://airflow.apache.org/ecosystem/#airflow-provider-system-test-dashboards

Benefits
● Ensure Reliability and Stability.
● Aides in the airflow provider release process.
● Test Infrastructure setup is owned by respective providers team.
● Provider maintainers are encouraged to implement dashboards in the

way that best suits their needs.

9

10

Teradata Dashboard

https://teradata.github.io/airflow/

https://teradata.github.io/airflow/

Technical Details
(Google)

11

12

Running tests manually

13

Turn on your
Computer

Install Airflow
from sources
with correct

provider

Copy the
System Tests

to Dags
folder

Launch
Airflow + Run
System tests

Save Results

Running tests manually

14

Turn on your
Computer

Install Airflow
from sources
with correct

provider

Copy the
System Tests

to Dags
folder

Launch
Airflow + Run
System tests

Save Results

Running tests manually

15

Turn on your
Computer

Install Airflow
from sources
with correct

provider

Copy the
System Tests

to Dags
folder

Launch
Airflow + Run
System tests

Save Results

Bob

Running tests automatically

16

Create a
Compute VM

Install Airflow
from sources
with correct

provider

Copy the
System Tests
to the DAGs

folder

Launch
Airflow + Run
System tests

Save Results
to DB (Big

Query)

17

Running tests automatically

18

Create a
Compute VM

Install Airflow
from sources
with correct

provider

Copy the
System Tests
to the DAGs

folder

Launch
Airflow + Run
System tests

Save Results
to DB (Big

Query)

Running tests automatically

19

Running tests automatically

20

Cloud
Composer

21

Running tests automatically

22

Zoomed in

Create a
Compute VM

Install Airflow
from sources
with correct

provider

Copy the
System Tests
to the DAGs

folder

23

Zoomed in

Launch
Airflow + Run
System tests

Save Results
to DB (Big

Query)

Export
Results to

HTML

Export
Results to

HTML

Technical Details
(Astronomer)

24

LLM Providers Dashboard
Components

LLM Dashboard

26https://astronomer.github.io/llm-dags-dashboard/

https://astronomer.github.io/llm-dags-dashboard/
https://astronomer.github.io/llm-dags-dashboard/

Test Execution workflow

27

Trigger
GitHub
Actions
Job

Copy
system
tests

Create
providers
wheel file
using
breeze

Clone
Airflow
github repo

Test Execution workflow

28

Build
image
with
providers
wheel file

Update
dashboard
with recent
runs
details

Trigger
System
tests and
wait for
completion

Deploy on
Astro

● Trigger all of LLM providers
system test DAGS

● Get the results and format it
● Share the results summary to

internal Astronomer Slack
channel

G

29

Orchestrator DAG

30

31

Slack Alert

Dashboard Update

 Trigger GitHub
Actions Job

Retrieve results Deploy to GitHub
Pages

 Notify update
with slack

Technical Details
(AWS)

33

A scheduled AWS CodePipeline pulls
the latest official main branch and
runs an AWS CodeBuild project which
launches each system test in its own
ECS container. The results from each
test are then aggregated into a simple
HTML dashboard hosted on github.io

On a failure, or if a new test is
detected, an AWS Lambda cuts a
trouble ticket for the team and sends a
Slack message to notify us.

34

Link to
Source

 Test
Name

Recent
Counts

 Hover for
Timestamp

Executor
 Used

Average Run
 Duration

What’s Next?

39

Machine-readable
Standardized
Output

A standardized JSON-formatted output
schema based on the JUnit XML format
will allow users to aggregate the
various provider-managed dashboards
into one that suits their purposes.

40

{
 "testsuite": {
 "provider": string, [REQUIRED]
 "tests": int, [REQUIRED]
 "errors": int, [REQUIRED]
 "failures": int, [REQUIRED]
 "skipped": int, [REQUIRED]
 "timestamp": string, [REQUIRED] // Standardize on UTC
 "duration": float, [OPTIONAL] // Milliseconds
 "properties": {}, [OPTIONAL] // Free-form and optional
 "testcases": [
 {
 "name": string, [OPTIONAL]
 "file": string, [REQUIRED]
 “duration": float, [OPTIONAL] // Milliseconds
 "result": {
 "state": "SUCCESS" | "SKIPPED" | "FAILURE", [REQUIRED]
 "message": string, [OPTIONAL]
 "type": string, [OPTIONAL] // Exception type if failure
 },
 “properties": {}, [OPTIONAL] // Free-form and optional
 },
 "properties": {}, [OPTIONAL] // Free-form and optional
]
 }
}

Proposed Schema

Sample - Bare Minimum

41

Provider Name

Test counts

Timestamp

List of Test Details

Sample - Successful

42

Pretty test name

Test run duration

Sample - Skipped

43

Sample - Failed

44

Questions?

Slide Deck

