
Exploring
DAG Design
Patterns

Sriram Vamsi Ilapakurthy –Senior
Software Engineer

What We'll Cover Today
● Motivation
● Introduction to DAGs in Airflow
● Task best practices
● Organize tasks
● DAG flexibility
● Parallelism

2

● My presentation, comments and opinions are provided in my personal capacity and not as a representative of
Walmart. They do not reflect the views of Walmart and are not endorsed by Walmart

Motivation
● Maintainability
● Efficiency - Resource/cost
● Flexibility - Reuse

3

Introduction to DAGs in Airflow
● DAG
● Key components

○ Tasks
■ Operators
■ Sensors

○ Dependencies

Task Best Practices

5

Keep tasks small & focussed
-

6

def process_and_load_data():
 # Extract data
 data = extract_data()
 # Clean data
 cleaned_data = clean_data(data)
 # Transform data
 transformed_data = transform_data(cleaned_data)
 # Load data
 load_data(transformed_data)

task = PythonOperator(
 task_id='process_and_load_data',
 python_callable=process_and_load_data,
 dag=dag,
)

Idempotency
● Tasks should produce the same results regardless of how many times

they're run.

7

def upsert_data(**kwargs):
 data = get_data_from_source()

 for record in data:

 db.upsert(record) # Updates if exists, inserts if not

Atomicity
● They should complete entirely or not at all, treat it like a transaction.

8

def atomic_task():
 try:
 print("Performing task operations...")
 except Exception as e:
 print(f"Error occurred: {e}")
 raise

Retries and error handling
● Proper error handling is vital for robust DAGs.

9

def unreliable_task():
 import random
 if random.choice([True, False]):
 raise Exception("Random failure!")

retry_task = PythonOperator(
 task_id='retry_task',
 python_callable=unreliable_task,
 retries=3,
 retry_delay=timedelta(minutes=5),
)

Bad vs Good Example

10

Organize tasks

11

Trigger Rules

12

Linear Workflow Pattern
● Tasks are executed sequentially, with

each task depending on the previous
one.

● Pros:
○ Clear dependency chain
○ Easy to track progress and identify

bottlenecks
● Cons:

○ Limited parallelism, potentially slower
execution for complex workflows

○ If one task fails, the entire workflow
stops

13

task_1 >> task_2 >> task_3

Fan-Out/Fan-In Pattern
● Tasks fan out for parallel processing and

then converge for final processing.
● For processing multiple datasets or data

partitions in parallel

14

task_1 >> [task_2, task_3, task_4]

Branching and Conditional Execution
● Dynamically choose which tasks to

execute based on runtime conditions.

● Pros:
○ Allows for dynamic and flexible

workflows
○ Reduces the need for multiple similar

DAGs
● Cons:

○ May require careful testing to ensure all
branches work correctly

15

Branching and Conditional Execution

16

BranchPythonOperator(
 task_id='data_quality_check’,
 python_callable=data_quality_check,
)

● Trigger rules

Branching and Conditional Execution

17

ShortCircuitOperator(
 task_id='check_data_availability',

python_callable=check_data_availability,
)

Dynamic Task Generation
● You need to create many similar tasks

dynamically based on data or
configuration.

● Dynamically generating tasks based on
API results

● Parallelism

18

Dynamic Task Generation Example
 # List of files to process
files_to_process = ['file_A.csv',
'file_B.csv', 'file_C.csv']

Dynamically create tasks for each file
process_tasks = []
for file in files_to_process:

task = PythonOperator(
 task_id=f'process_{file}',
 python_callable=process_file,
 op_kwargs={'filename': file}
)
 process_tasks.append(task)

19

Task Groups
● Organize complex DAGs into logical

groups
● Improve DAG readability and

maintainability
● Simplify dependency management

between groups of tasks

20

Task Groups

21

with TaskGroup('extract_and_transform') as
extract_transform_group:
 extract >> clean >> transform

with TaskGroup('load_and_validate') as
load_validate_group:
 load >> validate

start >> extract_transform_group >>
load_validate_group >> end

Combined dynamic tasks + task groups

22

Configure
DAGs

23

Configuring DAGs for Flexibility and Scalability

24

● Leverage DAG parameters for dynamic execution
● Implement cross-DAG dependencies
● Generate DAGs dynamically for complex workflows

DAG Params
@dag(

start_date=datetime(2023, 6, 1),
schedule=None,
catchup=False,
params={ "greeting": "Hello!",
 "multiplier": Param(default=3, type="integer",),
 "repeat_count": Param(default=5, type="integer",),
},
)

@task

def display_parameters(params: dict):
param1 = params["param1"]
param2 = params["param2"]

print(param1 * 3) # Multiply string (param1) by 3
print(f"Parameter 2: {param2}") # Display param2

25

DAG Params

26

fetch_task = PythonOperator(
 task_id=f'fetch_{category["name"]}_data',
 python_callable=fetch_data,
 op_kwargs={'category': category['name']},
)

categories = {
 'electronics':
'https://api.example.com/electronics',
 'clothing':
'https://api.example.com/clothing',
 'books': 'https://api.example.com/books'
}

Cross DAG triggering
trigger_dag_b = TriggerDagRunOperator(
 task_id='trigger_dag_b',
 trigger_dag_id='dag_b_reporting',
 conf={'triggered_by': 'dag_a'},
)

27

Cross DAG Sensor
wait_for_dag_a = ExternalTaskSensor(
 task_id='wait_for_dag_a',
 external_dag_id='dag_a_generate',
 external_task_id='generate_data',
 timeout=3600, # Timeout after 1 hour
 poke_interval=60, # Check every 60 seconds
 mode='poke'
)

28

Dynamic DAG Generation
● DAGs share common code
● Needs to run at different schedules
● Generate using common template

29

Dynamic DAG Generation

30

categories:
 - name: electronics
 schedule: '0 1 * * *'
 api_endpoint:
'https://api.example.com/electronics'
 - name: clothing
 schedule: '0 2 * * *'
 api_endpoint:
'https://api.example.com/clothing'
 - name: books
 schedule: '0 3 * * *'
 api_endpoint:
'https://api.example.com/books'

DAG Concurrency

31

Questions?

● Task best practices
● Organize tasks
● DAG flexibility

