Airflow as an
Al Agent's toolkit

Going Beyond MCPs & Unlocking 1000+ Integrations

Kaxil Naik & Pavan Kumar Gopidesu

Introduction

,,,\ “ ,’ i =
Kaxil Naik Pavan Kumar Gopidesu
Sr Eng Director @ Astronomer Technical Lead @ Tavant

Airflow Committer & PMC Member Airflow Committer & ASF Member

24+ hours of work!

Every. Schema. Change.

2-3 times per week

Customer use case - Relies on a lot of incoming data

O Data Sources

Hundreds of clients - thousands of S3, GCS feeds
- Formats vary (Parquet/CSV/JSON); schemas evolve
- Frequent schema drift
- Data across clouds

O Consumers:

- Per-consumer tables (Postgres, Iceberg, Glue)
- Upstream drift breaks ingestion

When things break!

Debug!
Schema comparison across files & DB
Change order processes
Manual fixes

Backfills

Notifying 100+ consumers

pemo: Handling Schema Drift

https://docs.google.com/file/d/1-rDwSf2ykOsRnyigfNCgNBEYDw5ipfG7/preview

pDemo: Data Quality Checks

& Airflow Queues | Simple Queue Ser

® localhost:28080/dags/lim_dq_check_s3_feed

q Dag
%+K i
R lim_dq_check_s3_feed Q. searchDags * D Trigger
oo i v - —
@ g Yptions, 1° llm_dq_check_s3_feed @ V¢ FavoriteDag =
Home &
Schedule Latest Run Next Run Owner Tags Latest Dag Version
2025-10-06, 12:47:15 @ airflow Vi
I Overview Runs Tasks Calendar Required Actions Audit Log Code Details
8 CustomerDataS3Feed
Assets ApproveCustomerDataDQResults [} B Last 24 Hours v 2025-10-05, 13:24:37 - 2025-10-06, 13:24:37

@ o Failed Tasks Failed Runs
Browse L3

Last 2 Dag Runs

&

Admin I Queued Duration [Run Duration
5 80
F 60 59.87
a 4
0
2025-10-06, 12:41:45 2025-10-06, 12:47:15
Run After
Docs
o
~

User

https://docs.google.com/file/d/1sJiy9Vfist3QEKR27OZRsu7dgQ2qeIKo/preview

What currently takes 24+ hours: What this PROTOTYPE demonstrates:

Y Manual schema comparison Automated detection (using Apache DataFusion & Al)
¥ Change order approval Human oversight at critical points

¥ Code changes and testing Cross-cloud validation

Y Debugging and backfills Business-friendly explanations

>

Does this problem resonate?

Would this solution work for you?

How does this work?

Automatic Context Injection

For SQL operations:
: "Postgre’0l 15.2",

e Database type and version (PostgreSQL 15.2)

:‘{

e Full schema from DbApiHook or Asset metadata . v int6a"
4)

e Sample data (first few rows) "email: "string",

oy | at": "timestamp"”
e Built-in safety rules R

For File operations: le data": []
;, - Ui @ | . . . B ’

"safety_r 1 L
e File format (Parquet, JSON, CSV) S?NS g&ég iiaterients"

e Storage type (S3, GCS, Azure) : "No DELETE without WHERE"

sSamp

e File size, row count estimates }

e Schema information

e Partitioning structure

Safety Mechanisms

We are not just sending prompts to LLMSs.
Safety layers we're exploring:

SQL Safety: Blocks DROP, DELETE without WHERE, TRUNCATE
Human-in-the-Loop: Required for sensitive operations

w7 Query validation: Parse and analyze before execution

w7 Asset sensitivity: Mark Assets as auto-requiring approval for accessing it (PlI)
w7 Audit logging: All Al decisions tracked separately

w7 Read-only by default: Write operations need explicit approval

Why Apache DataFusion?

e Unified query engine across object stores and DB. (S3, Postgres)
e Multiple formats (Parquet, JSON, CSV, Iceberg, Delta Lake)
e Single-node performance (no Spark overhead)

e Performance (in our test): 50M records in 14 seconds (with joins, groupby, min, max etc)

APACHE

/ DATAFUSION

I DataFusion is for READING only. Write uses DBApiHook

Current Approach - Specialized Operators

Current Implementation:

e LLMSchemaCompareOperator -for schema drift

e ILLMDataQualityOperator - for validation

LIMFileAnalysisOperator - for file analysis

... more to come for interacting with API(s) apart from Files & DB

Why specialized: Clear intent, better context for LLM, type safety, focused documentation
Alternative being explored: Unified LLMOperator with resource adapters

We're still figuring out the right abstraction. Your feedback will help.

Integration with Assets

Mark Asset as sensitive

Define how to access the Asset

° URI
e Connection

Define Asset type

° Data format
e Schema

Define metadata (for better Al context)

® Description
e Example queries

Future:

e Validations
e Statistics

from airflow.sdk import Asset

customer_asset = Asset(

name="customer_data",
uri="s3://bucket/customers/",
conn_1id="aws_default",
schema={
"customer_id": "int64",
Lemati stEtingt)
“phone_verified": "boolean"

},

sensitivity="pii",

format_="parquet",
statistics={"estimated rows": 50000000}

Airflow PMC perspective

What Airflow Principles Must Stay

Whatever we build must preserve Airflow's core strengths:
Deterministic DAG structure - static, reviewable, testable
Observable - lineage, logging, monitoring

Reliable - existing retry logic, error handling

Safe - no breaking changes to existing workflows

Leveraging an LLM is just one task in a predictable pipeline.

We're NOT building Al that changes DAG structure.

What We're NOT Building

X NOT: YES:

Al that changes DAG structure Al for repetitive, context-dependent tasks
Dynamic pipeline generation Deterministic DAGs with intelligent tasks
Al that makes architecture decisions Human oversight at critical points
Replacement for your data engineers Audit trails and observability

Implementation Reality Check

If we proceed, the path would be:
e Phase 1: Experimental provider (apache-airflow-providers-ai)
e Phase 2: Community feedback and iteration
e Phase 3: Production-ready provider (if it proves valuable)

e Phase 4: Core integration (only if community demands it)

This could take multiple months to get right. No shortcuts.

Should Airflow have production-ready
Al operators?

What We Need From You

Before we go further, we need community input:

Is this solving real problems you face?

What safety mechanisms are non-negotiable?

How should we handle Al errors and edge cases?
Right balance between intelligence & predictability?

Should this be a provider or core feature?

Future Possibilities

Expose 1000s of Hooks as Al Agent’s “tools”

@
Could Al-detected issues b

class HookToAIToolsMixin(ABC):
Should operators propose

@abstractmethod
|\/|u|ti_agent validation (one def describe_capabilities(self) -> AICapabilities:
"""Describe what this hook can do for AI systems""

All Al calls can be logged i @abstractmethod
e e e
. any other wild ideas (r)) """Get structural information about the resource"""

def get_usage_examples(self) -> List[UsageExample]:
"""Provide examples of common operations"""
return []

def validate_ai_operation(self, ope
return True, None

"""Mixin that Hooks in providers implement to expose AI capabilities."""

How to get involved?

-9 Mailing list: dev@airflow.apache.org (AIP coming after Summit)

@ Slack: #airflow-3-dev channel

] Pavan: gopidesupavan@gmail.com
[He wants your feedback directly]

E) Kaxil: kaxil@astronomer.io

mailto:dev@airflow.apache.org
mailto:gopidesupavan@gmail.com
mailto:kaxil@astronomer.io

Questions?
Concerns?
ldeas?

AIRFLOW.
H SUMMIT

The 2025 Apache
Airflow® Survey is

here!

