
Airflow as an
AI Agent's toolkit
Going Beyond MCPs & Unlocking 1000+ Integrations

Kaxil Naik & Pavan Kumar Gopidesu

Introduction

Kaxil Naik
Sr Eng Director @ Astronomer
Airflow Committer & PMC Member

Pavan Kumar Gopidesu
Technical Lead @ Tavant
Airflow Committer & ASF Member

24+ hours of work!

Every. Schema. Change.

2-3 times per week

Customer use case - Relies on a lot of incoming data

Data Sources
- Hundreds of clients → thousands of S3, GCS feeds
- Formats vary Parquet/CSV/JSON; schemas evolve
- Frequent schema drift
- Data across clouds

Consumers:
- Per‑consumer tables Postgres, Iceberg, Glue)
- Upstream drift breaks ingestion

When things break!

Debug!

Change order processes

Manual fixes

Schema comparison across files & DB

Backfills

Notifying 100+ consumers

Demo: Handling Schema Drift

https://docs.google.com/file/d/1-rDwSf2ykOsRnyigfNCgNBEYDw5ipfG7/preview

Demo: Data Quality Checks

https://docs.google.com/file/d/1sJiy9Vfist3QEKR27OZRsu7dgQ2qeIKo/preview

Does this problem resonate?

What currently takes 24+ hours:

❌ Manual schema comparison

❌ Change order approval

❌ Code changes and testing

❌ Debugging and backfills

What this PROTOTYPE demonstrates:

✅ Automated detection (using Apache DataFusion & AI)

✅ Human oversight at critical points

✅ Cross-cloud validation

✅ Business-friendly explanations

Would this solution work for you?

How does this work?

Automatic Context Injection

For SQL operations:

● Database type and version (PostgreSQL 15.2)

● Full schema from DbApiHook or Asset metadata

● Sample data (first few rows)

● Built-in safety rules

For File operations:

● File format (Parquet, JSON, CSV)

● Storage type (S3, GCS, Azure)

● File size, row count estimates

● Schema information

● Partitioning structure

Safety Mechanisms

We are not just sending prompts to LLMs.

Safety layers we're exploring:

✅ SQL Safety: Blocks DROP, DELETE without WHERE, TRUNCATE

✅ Human-in-the-Loop: Required for sensitive operations

🚧 Query validation: Parse and analyze before execution

🚧 Asset sensitivity: Mark Assets as auto-requiring approval for accessing it (PII)

🚧 Audit logging: All AI decisions tracked separately

🚧 Read-only by default: Write operations need explicit approval

Why Apache DataFusion?

● Unified query engine across object stores and DB. (S3, Postgres)

● Multiple formats (Parquet, JSON, CSV, Iceberg, Delta Lake)

● Single-node performance (no Spark overhead)

● Performance (in our test): 50M records in 14 seconds (with joins, groupby, min, max etc)

⚠ DataFusion is for READING only. Write uses DBApiHook

Current Implementation:

● LLMSchemaCompareOperator - for schema drift

● LLMDataQualityOperator - for validation

● LLMFileAnalysisOperator - for file analysis

● … more to come for interacting with API(s) apart from Files & DB

Why specialized: Clear intent, better context for LLM, type safety, focused documentation

Alternative being explored: Unified LLMOperator with resource adapters

We're still figuring out the right abstraction. Your feedback will help.

Current Approach - Specialized Operators

Integration with Assets

Mark Asset as sensitive

Define how to access the Asset

● URI
● Connection

Define Asset type

● Data format
● Schema

Define metadata (for better AI context)

● Description
● Example queries

Future:

● Validations
● Statistics

Airflow PMC perspective

What Airflow Principles Must Stay

Whatever we build must preserve Airflow's core strengths:

✅ Deterministic DAG structure - static, reviewable, testable

✅ Observable - lineage, logging, monitoring

✅ Reliable - existing retry logic, error handling

✅ Safe - no breaking changes to existing workflows

Leveraging an LLM is just one task in a predictable pipeline.

We're NOT building AI that changes DAG structure.

What We're NOT Building

❌ NOT:

AI that changes DAG structure

Dynamic pipeline generation

AI that makes architecture decisions

Replacement for your data engineers

✅ YES:

AI for repetitive, context-dependent tasks

Deterministic DAGs with intelligent tasks

Human oversight at critical points

Audit trails and observability

Implementation Reality Check

If we proceed, the path would be:

● Phase 1: Experimental provider (apache-airflow-providers-ai)

● Phase 2: Community feedback and iteration

● Phase 3: Production-ready provider (if it proves valuable)

● Phase 4: Core integration (only if community demands it)

This could take multiple months to get right. No shortcuts.

Should Airflow have production-ready
AI operators?

What We Need From You

Before we go further, we need community input:

● Is this solving real problems you face?

● What safety mechanisms are non-negotiable?

● How should we handle AI errors and edge cases?

● Right balance between intelligence & predictability?

● Should this be a provider or core feature?

Future Possibilities

● Could AI-detected issues become deterministic checks in future runs?

● Should operators propose PRs for DAG code changes (double approval)?

● Multi-agent validation (one generates, another reviews)?

● All AI calls can be logged in logs and DB and shown via plugins too

● … any other wild ideas (?)

● Expose 1000s of Hooks as AI Agent’s “tools”

How to get involved?

💬 Mailing list: dev@airflow.apache.org (AIP coming after Summit)

🗣 Slack: #airflow-3-dev channel

📧 Pavan: gopidesupavan@gmail.com
 [He wants your feedback directly]

📧 Kaxil: kaxil@astronomer.io

mailto:dev@airflow.apache.org
mailto:gopidesupavan@gmail.com
mailto:kaxil@astronomer.io

Questions?
Concerns?
Ideas?

The 2025 Apache
Airflow® Survey is
here!

Fill it out to for a free Airflow 3
Fundamentals or DAG Authoring in

Airflow 3 certification code

