AIRFLOW.
SUMMIT

AWS Lambda Executor:
The Speed of Local
Execution with the
Advantages of Remote

Nikolas (Niko) Oliveira

AIRFLOW.
SUMMIT

e Apache Airflow committer

e Sr.software engineer at Amazon

o Amazon Managed Workflows for Apache Airflow (MWAA)

o Founding member of the Amazon Apache Airflow Open Source Team

AIRFLOW.
SUMMIT

Executors facilitate the running of Airflow tasks (Task Instances)

The Scheduler decides when a task runs; the executor decides where and how

Executors run within the Scheduler process

Pluggable and extensible, you can write your very own!

AIRFLOW.
SUMMIT

e There are many types of Airflow executors, but some major ones include:

O Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

AIRFLOW.
SUMMIT

There are many types of Airflow executors, but some major ones include:

O Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

O Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where

remote workers pull tasks to execute. Often workers are persistent and run multiple tasks
at once: E.g.: CeleryExecutor, AwsBatchExecutor

AIRFLOW.
SUMMIT

There are many types of Airflow executors, but some major ones include:

O Local Executors: Airflow tasks are executed on the same host that the executor (i.e.
scheduler) is running on. E.g.: LocalExecutor

O Remote Queued/Batched Executors: Airflow tasks are sent to a central queue where
remote workers pull tasks to execute. Often workers are persistent and run multiple tasks
at once: E.g.: CeleryExecutor, AwsBatchExecutor

O Remote Containerized Executors: Airflow tasks are executed ad hoc inside
containers/pods. Each task is isolated in its own environment. E.g.:
KubernetesExecutor, AwsEcsExecutor

W4 AIRFLOW igh

rd SOMMIT X

Local 5 ? ?

Speed vs Isolation

AWS i
Celery Batch

scalability can you have it all? Convenience I

Speed & convenience vs isolation & Speed &

Low High

Isolation & Scalability

W4 AIRFLOW. Hign

A
& SUMMIT R
Local
Speed vs Isolation ; AWS
I Lambda!
AWS !
Celery Batch
Yes, with the Lambda Executor! Speed & | -
Convenience .l
i k K8s
I AWS
| ECS
Low High

Isolation & Scalability

AIRFLOW.
SUMMIT

e Ephemeral containerized compute environment
e Massively scalable architecture
e Low latency (warm pools, Python runtime)
e Resilient: Highly available, retries, and dead letter queue
e I|deal for short to medium running tasks:
o 15 min max execution time

o Restrictive memory and storage (~10GB)

N4 AIRFLOW.
h{ SUMMIT

Airflow Scheduler @

Executor Lambda invoke
(Lambda)

A A

: Container from
"""" Dockerfile

0 / -’u_’ \ LambdaExecutorFunction @ [s _/
N

Airflow app.py Lambda Python| |
Base Image H

Lambda Executor Architecture

Lambda Executor receives task from the
Scheduler. Queueing them and ultimately
calling an asynchronous invoke for each
Airflow Task to be run.

LambdaExecutorQueue
example_bedrock

aws-executor-testing
ECR

LambdaExecutorDLQ

W4 AIRFLOW.
& SUMMIT

Airflow Scheduler

Executor Lambda invoke
(Lambda) [T | QNp—- \ & /

A A

Container from

Lambda Executor Architecture

Dockerfile

e o-’u_. \ LambdaExecutorFunction @ @ _/
S

Airflow app.py Lambda Python| |
Base Image H

Lambda starts a Firecracker VM based off
of the provided image.

LambdaExecutorQueue
example_bedrock

aws-executor-testing

Users must build the image to their ok

specification and create the Lambda
Function.

LambdaExecutorDLQ
Example app/handler code and image

building tips found

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/executors/lambda-executor.html

W4 AIRFLOW.
& SUMMIT

Airflow Scheduler

Executor Lambda invoke
(Lambda)

A A

Container from
Dockerfile

Lambda Executor Architecture

LambdaExecutorFunction @ | ﬁ _/

Airflow app.py Lambda Python| |
Base Image H

On Airflow Task completion, a message is @
sent to a results queue indicating pass/fail LambdaExecutorQueue

example_bedrock
(SQS only as of now).

aws-executor-testing
ECR

Async Lambdas cannot be described!

It is the responsibility of the Lambda

app/handler code to send the results. LambdaExecutorDLQ

See provided example app.py in docs

https://github.com/apache/airflow/blob/main/providers/amazon/src/airflow/providers/amazon/aws/executors/aws_lambda/docker/app.py

N4 AIRFLOW.
h{ SUMMIT

Airflow Scheduler

Executor Lambda invoke
(Lambda)

A A

Lambda Executor Architecture

Container from
Dockerfile

9 / -’u_’ \ LambdaExecutorFunction @ [s _/
N

The Lambda function should be

Airflow app.py Lambda Python| |
Base Image N

. . LambdaE torQ:
configured with a Dead Letter Queue gk T i

(DLQ).

' aws-executor-testing
7.\ ECR

If an invocation fails catastrophically

(OOM, uncaught exception, etc) the @
Lambda function will send a message

to the DLQ.

LambdaExecutorDLQ

N4 AIRFLOW.
h{ SUMMIT

Airflow Scheduler

Executor Lambda invoke
(Lambda)

A A

Container from
Dockerfile

/ -’u_’ \ LambdaExecutorFunction @ [s _/
N

Airflow app.py Lambda Python| |
Base Image N

Lambda Executor Architecture @

The LambdaExecutor periodically

LambdaE torQ:
reads from both SQS queues for aﬁxa;pfffr,”e‘;’m“f e
results.

aws-executor-testing
ECR

Updating Task state and
communicating events back to the
Scheduler. LambdaExecutorDLQ

hello_world with ua 0-02T00:43 706+00:00, it should any moment

hello_world

10/02/2025(7) 12:43:25 AM All Run Types Vv All Run States

hello_world_local aes
hello_world_lambda aee

hello_world »2025-10-02, 00:43:23 UTC

A Details "z Graph E Gantt <> Code & Event Log

Schedule: 1 day, 0:00:00

Next Run ID: 2025-10-02, 00:00:00 UTC

>

hello_world with ua 0-02T00:43 706+00:00, it should any moment

hello_world

10/02/2025(7) 12:43:25 AM All Run Types Vv All Run States

hello_world_local aes
hello_world_lambda aee

hello_world »2025-10-02, 00:43:23 UTC

A Details "z Graph E Gantt <> Code & Event Log

Schedule: 1 day, 0:00:00

Next Run ID: 2025-10-02, 00:00:00 UTC

>

hello_world with ua 0-02T00:43 706+00:00, it should any moment

hello_world

10/02/2025(7) 12:43:25 AM All Run Types Vv All Run States

hello_world_local aes
hello_world_lambda aee

hello_world »2025-10-02, 00:43:23 UTC

A Details "z Graph E Gantt <> Code & Event Log

Schedule: 1 day, 0:00:00

Next Run ID: 2025-10-02, 00:00:00 UTC

>

AIRFLOW.
SUMMIT

Apache Airflow - Amazon Provider Package Health

Apache Airflow - Amazon Provider Package Health

View the health of AWS service integrations for Apache Airflow View the health of AWS service integrations for Apache Airflow
This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the ecs executor.

This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the lambda executor.

Local ECS executor Batch executor Lambda executor

Local ECS executor Batch executor Lambda executor

v i v ion ¥ 7 ’
System name Successes Failures Duration System name Siiccosses % Failiites % Duiration @

2 :
[2 example_appflow_run 28 0 24 minutes [2 example_appflow_run 20 7 5 minutes

2 l
[2 example_athena 27 33 minutes [2 example_athena 20 6 minutes

A
[Z example_batch 28 an hour [2 example_batch 20 8 minutes

2 :
[2 example_bedrock 28 17 minutes [7 example_bedrock 20 Aflnttes

[2 example_bedrock_batch_inference 28 28 minutes [7 example_bedrock_batch_inference 20 10 minutes

- 5 .
[2 example_cloudformation 27 17 minutes [example_cloudformation 20 4 minutes

[2 example_comprehend 28 24 minutes [2 example_comprehend 20 9 minutes

[2 example_comprehend_document_classifier 28 33 minutes [2 example_comprehend_document_classifier 20 11 minutes

[2 example_datasync 27 39 minutes [example_datasync 20 6 minutes

[2 example_dynamodb 17 minutes [2 example_dynamodb 20 4 minutes

AIRFLOW.
SUMMIT

Apache Airflow - Amazon Provider Package Health

View the health of AWS service integrations for Apache Airflow

This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the ecs executor.

Local ECS executor Batch executor Lambda executor

System name Successes V Failures v Duration v

[2 example_appflow_run 28 0 24 minutes
[2 example_athena 27 33 minutes
[2 example_batch 28 an hour
[2 example_bedrock 28 17 minutes
[2 example_bedrock_batch_inference 28 28 minutes
[2 example_cloudformation 27 17 minutes
[2 example_comprehend 28 24 minutes
[2 example_comprehend_document_classifier 28 33 minutes
[2 example_datasync 27 39 minutes

[2 example_dynamodb 28 17 minutes

Apache Airflow - Amazon Provider Package Health

View the health of AWS service integrations for Apache Airflow

This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the lambda executor.

Local ECS executor Batch executor Lambda executor

System name Successes V Failures v Duration

[2 example_appflow_run 20 7 5 minutes
[2 example_athena 20 6 minutes
[2 example_batch 20 8 minutes
[2 example_bedrock 20 4 minutes
[2 example_bedrock_batch_inference 20 10 minutes
[2 example_cloudformation 20 4 minutes
[2 example_comprehend 20 9 minutes
[2 example_comprehend_document_classifier 20 11 minutes

[2 example_datasync 20 6 minutes

[2 example_dynamodb 20 4 minutes

AIRFLOW.

Apache Airflow - Amazon Provider Package Health

View the health of AWS service integrations for Apache Airflow

This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the batch executor.

Local ECS executor Batch executor Lambda executor

System name Successes v Failures v

[2 example_appflow_run 28 0 14 minutes
[2 example_athena 28 20 minutes
[2 example_batch 28 33 minutes
[2 example_bedrock 28 10 minutes
[2 example_bedrock_batch_inference 28 21 minutes
[2 example_cloudformation 28 10 minutes
[2 example_comprehend 28 18 minutes
[2 example_comprehend_document_classifier 28 25 minutes
[2 example_datasync 28 25 minutes

[2 example_dynamodb 10 minutes

Duration v

SUMMIT

Apache Airflow - Amazon Provider Package Health

View the health of AWS service integrations for Apache Airflow

This live dashboard displays the current health of AWS service integrations available in the Amazon Provider package of
Apache Airflow.

The following table shows data for all runs from the past 7 days of the AWS System Tests using the latest Apache Airflow
codebase.

The data currently being displayed reflects the tests run using the lambda executor.

Local ECS executor Batch executor Lambda executor

System name Successes Vv Failures v Duration

[example_appflow_run 20 7 5 minutes
[2 example_athena 20 6 minutes
[2 example_batch 20 8 minutes
[2 example_bedrock 20 4 minutes
[2 example_bedrock_batch_inference 20 10 minutes
[2 example_cloudformation 20 4 minutes
[2 example_comprehend 20 9 minutes
[2 example_comprehend_document_classifier 20 11 minutes
[2 example_datasync 20 6 minutes

[2 example_dynamodb 20 4 minutes

W4 AIRFLOW.

’\ SUMMIT Runtime per Executor (minutes)
= ECS == Batch Lambda
60
ECS vs Batch vs Lambda - /\
/
The same data from the previous 48 / \ o
slides plotted alongside each other v

30

20

\//\\//

10

N4 AIRFLOW.
h{ SUMMIT

ECS vs Batch vs Lambda

If you order the data by the number of
tasks you start to see the defining
factor. Startup latency!

Runtime per Executor (minutes) - Ordered by Number of Tasks

== ECS == Batch Lambda
60 /
50 //
40 ,/

/N
NN

5 10 15 20

W4 AIRFLOW.
’\ SUMMIT Runtime per Executor (minutes) - Ordered by Number of Tasks

== ECS w=m Batch Lambda

60 7

ECS vs Batch vs Lambda 50

Plotting a trend, you can see Lambda

runtime as tasks are added grows at a
slower rate.

W4 AIRFLOW
& SUMMIT

Of all the AWS Operators we test
regularly. Only 1 was not usable with
the Lambda Executor, in its basic use
case.

Other Operators or usage patterns
may differ.

Deferrable operators are your friend!

AIRFLOW.
SUMMIT

e A new type of executor: Function as a Service (FaaS) --> FaaSt
e Distinctly different:

o Queued/async execution pattern

o FAST/resilient/scalable

o Restrictive memory/storage

o Execution time limits

Questions?

D

http://github.com/o-nikolas
http://linkedin.com/in/niko-oliveira-aws

