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1. Motivation



Dynamic DAGs in Airflow
Because everything in Airflow is code, we can generate DAGs dynamically

from datetime import datetime

from airflow.sdk import DAG

from airflow.providers.standard.operators.bash import BashOperator

dag_configs = [

    {"dag_id": "dynamic_dag_1", "command": "echo DAG 1"},

    {"dag_id": "dynamic_dag_2", "command": "echo DAG 2"},

]

def create_dag(dag_id: str, command: str) -> DAG:

    with DAG(dag_id=dag_id, start_date=datetime(2025, 10, 7), schedule="@daily") as dag:

        BashOperator(task_id="run_cmd", bash_command=command)

    return dag

for cfg in dag_configs:

    globals()[cfg["dag_id"]] = create_dag(cfg["dag_id"], cfg["command"])



Dynamic DAGs in Airflow
The DAG Factory library, for example, builds Airflow DAGs out of YAML files

$ pip install dag-factory

example_pypi_stats_dagfactory:

  default_args:

    start_date: 2025-10-07

  tasks:

    - task_id: "get_pypi_projects_list"

      decorator: airflow.sdk.task

      python_callable: pypi_stats.get_pypi_projects_list

    - task_id: "fetch_pypi_stats_data"

      decorator: airflow.sdk.task

      python_callable: pypi_stats.fetch_pypi_stats_data

      expand:

        package_name: +get_pypi_projects_list

    - task_id: "summarize"

      decorator: airflow.sdk.task

      python_callable: pypi_stats.summarize

      values: +fetch_pypi_stats_data



Dynamic DAGs in Airflow
The Cosmos package dynamically translates dbt pipelines into Airflow  DAGs

$ pip install astronomer-cosmos



● Over 20M+ monthly downloads in PyPI (just Cosmos & DAG Factory)
● Millions of dynamically build DAGs run every month in Astro

High adoption of Dynamic DAGs tools
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Dynamic DAGs needs

● DAGs are parsed both by the DAG Processor and every Worker node

● Compared to non-dynamic DAGs, dynamic DAGs will likely:
○ Consume more CPU
○ Consume more memory
○ Take longer to be parsed

● Users can be surprised by:
○ DAG Timeout issues
○ Long task queue times
○ Resource consumption not only on the DAG Processor, but also on 

worker nodes



Dynamic DAGs issues

https://astronomer.zendesk.com/agent/tickets/80415

https://astronomer.zendesk.com/agent/tickets/80415


https://astronomer.zendesk.com/agent/tickets/78119

Dynamic DAGs issues

https://astronomer.zendesk.com/agent/tickets/78119


Stakeholders who cares about performance?

● End-users: can lose money due to misbehaving workflows

● Airflow Developers: want to improve - and not degrade - performance 
over versions

● Sales: so they communicate metrics to prospective customers with 
confidence

● Product Marketing: wants to compare against competitors



Lack of benchmark standardization

● No clear standard for running performance benchmarks on Apache 
Airflow

● Users and companies very often rely on ad-hoc benchmarking

● There is lack of consistency and manual overhead

● Lack of history, results are usually presented in one-off spreadsheets, 
docs and slides



2. Benchmark Principles



● Define what you want to measure (throughput, latency, resource usage, 
etc)

● Tie benchmarks to real-world use patterns (peak loads, typical queries, 
business workflows)

● Motivation:
○ Find bottlenecks
○ Comparing against a baseline

Clear objectives



Workload Design

● Representativeness: Use realistic workloads, not just synthetic stress 
tests.

● Variability: Include different query types, request patterns, and 
concurrency levels.

● Scaling: Test both typical and extreme workloads (steady state + stress 
testing).



Environment consistency

● Ensure test environments are isolated and reproducible (same 
hardware, cloud instance type, config).

● Minimize external noise: background jobs, network contention, 
autoscaling effects.

● Use version control for test configs, datasets, and scripts.



Benchmark experiment life cycle

Pre-process
⏺ setup isolated 
infrastructure
⏺ install necessary 
software

Run experiment
⏺ run desired 
command

Post-process
⏺ collect metrics
⏺ store metrics
⏺ tear down 
infrastructure



3. Representative Workflows



Some workflows are too small

https://github.com/dbt-labs/jaffle-shop-classic

https://github.com/dbt-labs/jaffle-shop-classic


Synthetic workflows can not be representative

https://github.com/astronomer/astronomer-cosmos/pull/827

https://github.com/astronomer/astronomer-cosmos/pull/827


Real (open source) dbt project

https://github.com/google/fhir-dbt-analytics

https://github.com/google/fhir-dbt-analytics


4. Measurement & Metrics



Measurement & Metrics

● Core metrics:
○ DAG Run
○ Task Throughput
○ Error rate
○ Resource utilization
○ Memory

● Secondary metrics:
○ Startup time
○ Queue time

● Monitor system health
○ Logs, GC, caching, throttling



Statistical Significance

● Run multiple iterations, donʼt rely on single runs.

● Be aware of variance (especially in cloud environments)

● Use statistical techniques (confidence intervals, standard deviation) to 
confirm results are stable:
○ Standard deviation
○ Percentiles (p50, p95, p99



5. Implementation



Experiment goal

Understand Cosmos 1.10 performance compared to 
dbt Core and dbt Cloud, when splitting the execution 

of a dbt pipeline in one or multiple commands, using a 
representative dbt project.



Experiment goal

$ dbt build $ dbt seed
$ dbt run
$ dbt test

$ dbt seed --select raw_customers
$ dbt seed --select raw_orders
$ dbt seed --select raw_payments

$ dbt run --select stg_customers
$ dbt run --select stg_orders
$ dbt run --select stg_payments
$ dbt run --select customers
$ dbt run --select orders

$ dbt test --select stg_customers
$ dbt test --select stg_orders
$ dbt test --select stg_payments
$ dbt test --select customers
$ dbt test --select orders

# cmd: 1 # cmd: 3 #cmd: 13 



Experiment goal

# cmd: 1 # cmd: 3 #cmd: 13 



Metrics considered

● Pipeline execution time
● Memory consumption (average and standard deviation)
● CPU (average and standard deviation)



Benchmark experiment life cycle dbt Cloud

Pre-process
⏺ create trial account
⏺ setup project

Run experiment
⏺ trigger dbt Cloud 
job

Post-process
⏺ collect time
⏺ store metrics



Benchmark experiment life cycle dbt Core

Pre-process
⏺ create K8s cluster
⏺ install Prometheus

Run experiment
⏺ run dbt command

Post-process
⏺ check command 
status
⏺ collect metrics
⏺ store metrics
⏺ tear down 
infrastructure



Benchmark experiment life cycle Airflow

Pre-process
⏺ create K8s cluster
⏺ install Prometheus
⏺ create Airflow 
Deployment

Run experiment
⏺ trigger DAG to run

Post-process
⏺ check command 
status
⏺ collect metrics
⏺ store metrics
⏺ tear down 
infrastructure



Repository

We strongly believe that benchmarks should be public and 
reproducible by anyone in the community, and for this reason we’ve 
open-sourced this repository:
https://github.com/astronomer/cosmos-benchmark

https://github.com/astronomer/cosmos-benchmark


6. Results



Results

Platform
Airflow 
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU 
Utilization

Stddev CPU 
Utilization

Max Memory 
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A



Results

Platform
Airflow 
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU 
Utilization

Stddev CPU 
Utilization

Max Memory 
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

https://github.com/astronomer/cosmos-benchmark/pull/4
https://github.com/astronomer/cosmos-benchmark/pull/5

https://github.com/astronomer/cosmos-benchmark/pull/4
https://github.com/astronomer/cosmos-benchmark/pull/5


Results

Platform
Airflow 
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU 
Utilization

Stddev CPU 
Utilization

Max Memory 
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

Airflow OSS
airflow dags 
test

DbtBuildLocalO
perator dbt build single command 0:05:59 0.18 0.03 537 MiB

Airflow OSS
airflow dags 
test DbtDag dbt run

multi command
(one per model) 0:27:26 0.19 0.25 1 GiB

https://github.com/astronomer/cosmos-benchmark/pull/6

https://github.com/astronomer/cosmos-benchmark/pull/6


Results

Platform
Airflow 
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU 
Utilization

Stddev CPU 
Utilization

Max Memory 
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

Airflow OSS
airflow dags 
test

DbtBuildLocalO
perator dbt build single command 0:05:59 0.18 0.03 537 MiB

Airflow OSS
airflow dags 
test DbtDag dbt run

multi command
(one per model) 0:27:26 0.19 0.25 1 GiB

Airflow OSS
airflow dags 
trigger

DbtBuildLocalO
perator dbt build single command 0:05:50 1.3 0.09 1.6 GB

Airflow OSS
airflow dags 
trigger DbtDag dbt run

multi command
(one per model) 0:15:13 3 0.15 2.5 GB

https://github.com/astronomer/cosmos-benchmark/pull/7

https://github.com/astronomer/cosmos-benchmark/pull/7




7. Next steps



Next steps

https://github.com/astronomer/cosmos-benchmark

● Have a configuration-driven approach to run the tests - and track those 
over time

● Leverage Airflow 3 APIs to trigger and monitor the status of Airflow jobs

● Store results consistently in a way we can track experiments over time - 
publically

● Automate tests via the CI based on changes

● Collect more metrics

● Extend benchmark to run in Astro

https://github.com/astronomer/cosmos-benchmark


8. Take away



Performance/benchmark testing isn’t just about 
running stress tools—it’s about designing fair, 
reproducible, and meaningful experiments that 

guide decision-making.



We need to have a Open Source standard to run 
benchmarks on Airflow to allow the project to 

continue being a leader among orchestration tools



Learn more about how to run dbt 
with Apache Airflow and Cosmos



Thank you!
Questions?

#airflow-dbt Slack channel

Tati Al-ChueyrRahul Vats


