Benchmarking the Performance of

Dynamically Generated DAGs

Rahul Vats Tati Al-Chueyr
Engineering Manager Principal Software Engineer
@ Astronomer @ Astronomer

Airflow Summit, Seattle, USA - 7 October 2025
ASTRONOMER

Agenda

NO bk WD -

Motivation

Benchmark Principles
Representative Workflows
Metrics

Implementation

Results

Next steps

1. Motivation

Dynamic DAGs in Airflow

Because everything in Airflow is code, we can generate DAGs dynamically

from datetime import datetime
from airflow.sdk import DAG
from airflow.providers.standard.operators.bash import BashOperator

dag_configs = [
{"dag_id": "dynamic_dag 1", "command": "echo DAG 1"},
{"dag _id": "dynamic_dag 2", "command": "echo DAG 2"},
]

def create_dag(dag _id: str, command: str) -> DAG:
with DAG(dag_id=dag id, start_date=datetime(, , 7), schedule="@daily") as dag:
BashOperator(task_id="run_cmd", bash_command=command)
return dag

for cfg in dag_configs:
globals()[cfg["dag id"]] = create_dag(cfg["dag_id"], cfg["command"])

Dynamic DAGs in Airflow

The DAG Factory library, for example, builds Airflow DAGs out of YAML files

example_pypi_stats_dagfactory:
default_args:
start_date:
tasks:
- task_id: "get_pypi_projects_list"
decorator: airflow.sdk.task

X . X X get_pypi_projects_list_ summarize_
python_callable : pypl_StatS -get_pypl_pr‘OJGCtS_llst @ success @ success @ success
- task_id: "fetch_pypi_stats_data" Otk Slesk R

fetch_pypi_stats_data_ [3] }

decorator: airflow.sdk.task
python_callable: pypi_stats.fetch_pypi_stats_data
expand:
package_name: +get_pypi_projects_list
- task_id: "summarize"
decorator: airflow.sdk.task
python_callable: pypi stats.summarize
values: +fetch pypi stats_data

$ pip install dag-factory

Dynamic DAGs in Airflow

The Cosmos package dynamically translates dbt pipelines into Airflow DAGs

X dbt

Lineage Graph

raw_customers

raw_orders

raw_payments

All selected jaffle_shop

raw_customers_seed
DbtSeedLocalOperator

stg_customers + 2 Tasks
Task Group

stg_customers
customers + 2 Tasks
customers raw_orders_seed stg_orders + 2 Tasks Task Group
DbtSeedLocalOperator Task Group S e
sig_orders -
1 : raw_payments_seed stg_payments + 2 Tasks orders + 2 Tasks
SUL BRSNS orders DbtSeedLocalOperator Task Group Task Group

untagged Update Graph X

install astronomer-cosmos

High adoption of Dynamic DAGs tools

e Over 20M+ monthly downloads in PyPI (just Cosmos & DAG Factory)
e Millions of dynamically build DAGs run every month in Astro

nnnnn

uuuuu

Metadata
Database

DAGs
folder

DAG Processor

How often Airflow reparse(Dynamic) DAGs

LSTRONDMER

Q
... al |2
A [0} c
m S
c o x
=}
[n'd
-~ [
@
T
)
=}
o)
>
g
................................... RS R
C
=}
h'e
X
— nimE
%) (O]
8 IR 3
2 NIEE: <
(m) Q@ S| © i3]
o gl |E| @ o
o) = x| O L
........... [7 AR == I 77 B O S S
—_ he] ©
> o |F
® S|l o
£| 5 c 3 =3
[&} > ()
o|X| x|l |3
29| ollE]|°
1S <8
ol all=B
Slo| oL L |
® >
L 1ol @
O| &
I
A
......... mm-----------------------------------.ﬁ--------
o
84— 8
< =
o| ©
SO »
o <
e (m)
)
@
©
o
. B

Dynamic DAGs needs

e DAGs are parsed both by the DAG Processor and every Worker node

e Compared to non-dynamic DAGs, dynamic DAGs will likely:
o Consume more CPU
o Consume more memory
o Take longer to be parsed

e Users can be surprised by:
o DAG Timeout issues
o Long task queue times
o Resource consumption not only on the DAG Processor, but also on
worker nodes

Dynamic DAGs issues

Dags taking a long time to appear in the Ul and staying in a queued state...

Y O

Via web form

Annie Friedman |Internal . Aug 06 10:43
ﬁo

They said Dags were talking sometimes upwards of 30 minutes to reflect changes and
tasks are being queued for upwards of 10min. They are a bit high on dag processor
and worker cpu but not horribly so. From my cursory glance, | suspect this is
exacerbated from their high rate of dag only deploys. Is there anything on the backend
we can do to alleviate some of the pressure from the deploys? They aren't interested
in using ephemeral deployments and their ci/cd runs a dag only deploy with every
developer's commits. They also aren't interested in changing their ci/cd process at
this time. This is effecting both dev and prod and is new since they have moved to
hosted.

https://astronomer.zendesk.com/agent/tickets/80415

LX)

https://astronomer.zendesk.com/agent/tickets/80415

Dynamic DAGs issues

cosmos task taking too lon
Via API

B - - Jun 26 01:43
To: IS o\ more

Hi, | have an issue with a dag "ingestion_dbt_starfish_retail_orders", where the dag is
scheduled to run every 10min but each run is taking more than 10min after | moved to
cosmos. This dbt job is running several dbt models based on a dbt tag. After moving to
cosmos, the length of each run has increased because the dbt compile takes place for
each individual model instead of just once when running with the tag. Do you have any
suggestions on reducing the time taken when using cosmos and running dbt models
using dbt tags

Workspace: Data Team

Deployment: I - data-prod-astro-deployment

https://astronomer.zendesk.com/agent/tickets/78119

https://astronomer.zendesk.com/agent/tickets/78119

Stakeholders who cares about performance?

e End-users: can lose money due to misbehaving workflows

e Airflow Developers: want to improve - and not degrade - performance
over versions

e Sales: so they communicate metrics to prospective customers with
confidence

e Product Marketing: wants to compare against competitors

Lack of benchmark standardization

e No clear standard for running performance benchmarks on Apache
Airflow

e Users and companies very often rely on ad-hoc benchmarking
e There is lack of consistency and manual overhead

e Lack of history, results are usually presented in one-off spreadsheets,
docs and slides

2. Benchmark Principles

Clear objectives

e Define what you want to measure (throughput, latency, resource usage,
etc)

e Tie benchmarks to real-world use patterns (peak loads, typical queries,
business workflows)

e Motivation:
o Find bottlenecks
o Comparing against a baseline

Workload Design

e Representativeness: Use realistic workloads, not just synthetic stress
tests.

e Variability: Include different query types, request patterns, and
concurrency levels.

e Scaling: Test both typical and extreme workloads (steady state + stress
testing).

Environment consistency

e Ensure test environments are isolated and reproducible (same
hardware, cloud instance type, config).

e Minimize external noise: background jobs, network contention,
autoscaling effects.

e Use version control for test configs, datasets, and scripts.

Benchmark experiment life cycle

Pre-process Run experiment Post-process

) setup isolated O run desired O collect metrics
infrastructure command) store metrics
O install necessary) tear down

software infrastructure

3. Representative Workflows

Some workflows are too small

- raw_customers_seed stg_customers + 2 Tasks

" DbtSeedLocalOperator — Task Group
D - o o - customers + 2 Tasks
- raw_orders_seed - stg_orders +2Tasks - -
— Task Group
" DbtSeedLocalOperator —— Task Group -
- raw_payments_seed - stg_payments + 2 Tasks - orders + 2 Tasks
' DbtSeedLocalOperator — Task Group * Task Group

https://qithub.com/dbt-labs/jaffle-shop-classic

https://github.com/dbt-labs/jaffle-shop-classic

Synthetic workflows can not be representative

https://github.com/astronomer/astronomer-cosmos/pull/827

https://github.com/astronomer/astronomer-cosmos/pull/827

Real (open source) dbt project

u M
0

ssssss

AAAAA

TR
'E'Il!" 1

* —

https://github.com/gooagle/fhir-dbt-analvytics

==————~| | Options v

https://github.com/google/fhir-dbt-analytics

4. Measurement & Metrics

Measurement & Metrics

e Core metrics:

DAG Run

Task Throughput
Error rate

Resource utilization
Memory

O O O O O

e Secondary metrics:
o Startup time
o Queue time

e Monitor system health
o Logs, GC, caching, throttling

Statistical Significance

e Run multiple iterations, don't rely on single runs.
e Be aware of variance (especially in cloud environments)

e Use statistical techniques (confidence intervals, standard deviation) to

confirm results are stable:
o Standard deviation
o Percentiles (p50, p95, p99)

5. Implementation

Experiment goal

Understand Cosmos 1.10 performance compared to
dbt Core and dbt Cloud, when splitting the execution
of a dbt pipeline in one or multiple commands, using a
representative dbt project.

Experiment goal

cmd: 1 #cmd: 3

$ dbt build

$ dbt seed $ dbt seed --select raw customers
$ dbt run $ dbt seed --select raw orders
$ dbt test $ dbt seed --select raw payments
$ dbt run --select stg customers
$ dbt run --select stg orders
$ dbt run --select stg payments
$ dbt run --select customers
$ dbt run --select orders
dbt test --select stg customers

dbt test --select stg orders
dbt test --select stg payments
dbt test --select customers
dbt test --select orders

vy 0 Ur A U

Experiment goal

#cmd: 3

build t d tg_cust +2Task
DbtBuildLocalOperator seed run test raw_customers_see stg_customers asks
~ success DbtSeedLocalOperator DbtRunLocalOperator DbtTestLocalOperator DbtseedLOCQloperG!Ol’ Task Gl'OUp
. s success
cust S +2 Tasks
raw_orders_seed stg_orders +2 Tasks
Task Group
DbtSeedLocalOperator Task Group
v/ success
o Success ——
raw_payments_seed stg_payments + 2 Tasks orders +2 Tasks
DbtSeedLocalOperator Task Group Task Group

Metrics considered

o Pipeline execution time
e Memory consumption (average and standard deviation)
e CPU (average and standard deviation)

Benchmark experiment life cycle dbt Cloud

Pre-process Run experiment Post-process
O create trial account O trigger dbt Cloud O collect time
O setup project job) store metrics

Benchmark experiment life cycle dbt Core

Pre-process

) create K8s cluster
O install Prometheus

Run experiment

J run dbt command

Post-process

J check command
status

O collect metrics
) store metrics

] tear down
infrastructure

Benchmark experiment life cycle Airflow

Pre-process

J create K8s cluster
O install Prometheus
O create Airflow
Deployment

Run experiment
O trigger DAG to run

Post-process

) check command
status

1 collect metrics
O store metrics

] tear down
infrastructure

Repository

We strongly believe that benchmarks should be public and
reproducible by anyone in the community, and for this reason we'’ve
open-sourced this repository:

https://github.com/astronomer/cosmos-benchmark

6. Results

Results

Airflow Durati Max CPU Stddev CPU Max Memory
Platform Command Airflow DAG dbt Command Granuarity on Utilization Utilization Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

Results

Airflow
Platform Command
dbt Cloud N/A
dbt Core N/A
dbt Core N/A

Airflow DAG

N/A

N/A

N/A

dbt Command

dbt build

dbt run

dbt run

Granuarity
single command
single command

multi command
(one per model)

https://qithub.com/astronomer/cosmos-benchmark/pull/4

https://qithub.com/astronomer/cosmos-benchmark/pull/5

Durati Max CPU Stddev CPU
on Utilization Utilization

0:05:10 N/A N/A

0:05:05 0.39 0.06

0:31:50 0.39 0.06

Max Memory
Usage

N/A

306 MiB

306 MiB

ASTRONDMER

https://github.com/astronomer/cosmos-benchmark/pull/4
https://github.com/astronomer/cosmos-benchmark/pull/5

Results

Platform

dbt Cloud

dbt Core

dbt Core

Airflow OSS

Airflow OSS

Airflow
Command

N/A

N/A

N/A

airflow dags
test

airflow dags
test

Airflow DAG
N/A

N/A

N/A
DbtBuildLocalO

perator

DbtDag

dbt Command

dbt build

dbt run

dbt run

dbt build

dbt run

Granuarity

single command

single command

multi command
(one per model)

single command

multi command
(one per model)

https://github.com/astronomer/cosmos-benchmark/pull/6

Durati
on

0:05:10

0:05:05

0:31:50

0:05:59

0:27:26

Max CPU
Utilization

N/A

0.39

0.39

0.18

0.19

Stddev CPU
Utilization

N/A

0.06

0.06

0.03

0.25

Max Memory
Usage

N/A

306 MiB

306 MiB

537 MiB

1GiB

https://github.com/astronomer/cosmos-benchmark/pull/6

Results

Platform

dbt Cloud

dbt Core

dbt Core

Airflow OSS

Airflow OSS

Airflow OSS

Airflow OSS

Airflow
Command

N/A

N/A

N/A

airflow dags
test

airflow dags
test

airflow dags
trigger
airflow dags
trigger

Airflow DAG

N/A

N/A

N/A

DbtBuildLocalO
perator

DbtDag

DbtBuildLocalO
perator

DbtDag

dbt Command

dbt build

dbt run

dbt run

dbt build

dbt run

dbt build

dbt run

Granuarity

single command

single command

multi command
(one per model)

single command

multi command
(one per model)

single command

multi command
(one per model)

https://github.com/astronomer/cosmos-benchmark/pull/7

Durati
on

0:05:10

0:05:05

0:31:50

0:05:59

0:27:26

0:05:50

0:15:13

Max CPU
Utilization

N/A

0.39

0.39

0.18

0.19

1.3

Stddev CPU
Utilization

N/A

0.06

0.06

0.03

0.25

0.09

0.15

Max Memory
Usage

N/A

306 MiB

306 MiB

537 MiB

1GiB

1.6 GB

25GB

ASTRONDMER

https://github.com/astronomer/cosmos-benchmark/pull/7

H AIRFLOW
SUMMIT

Boosting dbt Core
Workflows Performance

With Airflow’s Deferrable
Capabilities

12:00 PT - Wednesday, October 8, 2025

Pankaj Koti
Software Engineer
@ Astronomer

» Apache Airflow Committer

Tatiana Al-Chueyr
Staff Software Engineer
@ Astronomer

¥ Cosmos Tech Lead

Pankaj Singh

Senior Software Engineer
@ Astronomer

Apache Airflow Committer

7. Next steps

Next steps

https://qithub.com/astronomer/cosmos-benchmark

e Have a configuration-driven approach to run the tests - and track those
over time

e Leverage Airflow 3 APIs to trigger and monitor the status of Airflow jobs

e Store results consistently in a way we can track experiments over time -
publically

e Automate tests via the Cl based on changes
e Collect more metrics

e Extend benchmark to run in Astro

https://github.com/astronomer/cosmos-benchmark

8. Take away

Performance/benchmark testing isn’t just about

running stress tools—it's about designing fair,

reproducible, and meaningful experiments that
guide decision-making.

We need to have a Open Source standard to run
benchmarks on Airflow to allow the project to
continue being a leader among orchestration tools

target_name= 3
profile_mappin stgresUserPasswordProfileMapping
conn_id= _CONN_ID,

profile_args : SCHEMA_NAME},

execution_confy
dbt_executab

Orchestrating dbt
with Apache Airflow®
using Cosmos

dbt_project
group_id= 4
project_config=_project_config,
profile_config=_profile_config,
execution_config=_execution_config,
operator_args={

ASTRONDMER

Thank youl!
Questions?

Rahul Vats Tati Al-Chueyr

t#airflow-dbt Slack channel
ASTRONOMER

