
Benchmarking the Performance of
Dynamically Generated DAGs

Rahul Vats
Engineering Manager

@ Astronomer

Tati Al-Chueyr
Principal Software Engineer

@ Astronomer

Airflow Summit, Seattle, USA  7 October 2025

Agenda

1. Motivation
2. Benchmark Principles
3. Representative Workflows
4. Metrics
5. Implementation
6. Results
7. Next steps

1. Motivation

Dynamic DAGs in Airflow
Because everything in Airflow is code, we can generate DAGs dynamically

from datetime import datetime

from airflow.sdk import DAG

from airflow.providers.standard.operators.bash import BashOperator

dag_configs = [

 {"dag_id": "dynamic_dag_1", "command": "echo DAG 1"},

 {"dag_id": "dynamic_dag_2", "command": "echo DAG 2"},

]

def create_dag(dag_id: str, command: str) -> DAG:

 with DAG(dag_id=dag_id, start_date=datetime(2025, 10, 7), schedule="@daily") as dag:

 BashOperator(task_id="run_cmd", bash_command=command)

 return dag

for cfg in dag_configs:

 globals()[cfg["dag_id"]] = create_dag(cfg["dag_id"], cfg["command"])

Dynamic DAGs in Airflow
The DAG Factory library, for example, builds Airflow DAGs out of YAML files

$ pip install dag-factory

example_pypi_stats_dagfactory:

 default_args:

 start_date: 2025-10-07

 tasks:

 - task_id: "get_pypi_projects_list"

 decorator: airflow.sdk.task

 python_callable: pypi_stats.get_pypi_projects_list

 - task_id: "fetch_pypi_stats_data"

 decorator: airflow.sdk.task

 python_callable: pypi_stats.fetch_pypi_stats_data

 expand:

 package_name: +get_pypi_projects_list

 - task_id: "summarize"

 decorator: airflow.sdk.task

 python_callable: pypi_stats.summarize

 values: +fetch_pypi_stats_data

Dynamic DAGs in Airflow
The Cosmos package dynamically translates dbt pipelines into Airflow DAGs

$ pip install astronomer-cosmos

● Over 20M+ monthly downloads in PyPI (just Cosmos & DAG Factory)
● Millions of dynamically build DAGs run every month in Astro

High adoption of Dynamic DAGs tools

How often Airflow reparse(Dynamic) DAGs
DAG Processor Scheduler Executor WorkerMetadata

Database
DAGs
folder

Fetch DAGs

Parse DAGs

Serialise DAG

Create DAG Run

Identify schedulable tasks

Queue Task Runs

Queue DAG Run

Delegate Task Run

Queue Task Run

Parse DAG

Run Task

Identify schedulable DAGs

(per task run)

(per DAG
reparse)

Fetch DAG

Dynamic DAGs needs

● DAGs are parsed both by the DAG Processor and every Worker node

● Compared to non-dynamic DAGs, dynamic DAGs will likely:
○ Consume more CPU
○ Consume more memory
○ Take longer to be parsed

● Users can be surprised by:
○ DAG Timeout issues
○ Long task queue times
○ Resource consumption not only on the DAG Processor, but also on

worker nodes

Dynamic DAGs issues

https://astronomer.zendesk.com/agent/tickets/80415

https://astronomer.zendesk.com/agent/tickets/80415

https://astronomer.zendesk.com/agent/tickets/78119

Dynamic DAGs issues

https://astronomer.zendesk.com/agent/tickets/78119

Stakeholders who cares about performance?

● End-users: can lose money due to misbehaving workflows

● Airflow Developers: want to improve - and not degrade - performance
over versions

● Sales: so they communicate metrics to prospective customers with
confidence

● Product Marketing: wants to compare against competitors

Lack of benchmark standardization

● No clear standard for running performance benchmarks on Apache
Airflow

● Users and companies very often rely on ad-hoc benchmarking

● There is lack of consistency and manual overhead

● Lack of history, results are usually presented in one-off spreadsheets,
docs and slides

2. Benchmark Principles

● Define what you want to measure (throughput, latency, resource usage,
etc)

● Tie benchmarks to real-world use patterns (peak loads, typical queries,
business workflows)

● Motivation:
○ Find bottlenecks
○ Comparing against a baseline

Clear objectives

Workload Design

● Representativeness: Use realistic workloads, not just synthetic stress
tests.

● Variability: Include different query types, request patterns, and
concurrency levels.

● Scaling: Test both typical and extreme workloads (steady state + stress
testing).

Environment consistency

● Ensure test environments are isolated and reproducible (same
hardware, cloud instance type, config).

● Minimize external noise: background jobs, network contention,
autoscaling effects.

● Use version control for test configs, datasets, and scripts.

Benchmark experiment life cycle

Pre-process
⏺ setup isolated
infrastructure
⏺ install necessary
software

Run experiment
⏺ run desired
command

Post-process
⏺ collect metrics
⏺ store metrics
⏺ tear down
infrastructure

3. Representative Workflows

Some workflows are too small

https://github.com/dbt-labs/jaffle-shop-classic

https://github.com/dbt-labs/jaffle-shop-classic

Synthetic workflows can not be representative

https://github.com/astronomer/astronomer-cosmos/pull/827

https://github.com/astronomer/astronomer-cosmos/pull/827

Real (open source) dbt project

https://github.com/google/fhir-dbt-analytics

https://github.com/google/fhir-dbt-analytics

4. Measurement & Metrics

Measurement & Metrics

● Core metrics:
○ DAG Run
○ Task Throughput
○ Error rate
○ Resource utilization
○ Memory

● Secondary metrics:
○ Startup time
○ Queue time

● Monitor system health
○ Logs, GC, caching, throttling

Statistical Significance

● Run multiple iterations, donʼt rely on single runs.

● Be aware of variance (especially in cloud environments)

● Use statistical techniques (confidence intervals, standard deviation) to
confirm results are stable:
○ Standard deviation
○ Percentiles (p50, p95, p99

5. Implementation

Experiment goal

Understand Cosmos 1.10 performance compared to
dbt Core and dbt Cloud, when splitting the execution

of a dbt pipeline in one or multiple commands, using a
representative dbt project.

Experiment goal

$ dbt build $ dbt seed
$ dbt run
$ dbt test

$ dbt seed --select raw_customers
$ dbt seed --select raw_orders
$ dbt seed --select raw_payments

$ dbt run --select stg_customers
$ dbt run --select stg_orders
$ dbt run --select stg_payments
$ dbt run --select customers
$ dbt run --select orders

$ dbt test --select stg_customers
$ dbt test --select stg_orders
$ dbt test --select stg_payments
$ dbt test --select customers
$ dbt test --select orders

cmd: 1 # cmd: 3 #cmd: 13

Experiment goal

cmd: 1 # cmd: 3 #cmd: 13

Metrics considered

● Pipeline execution time
● Memory consumption (average and standard deviation)
● CPU (average and standard deviation)

Benchmark experiment life cycle dbt Cloud

Pre-process
⏺ create trial account
⏺ setup project

Run experiment
⏺ trigger dbt Cloud
job

Post-process
⏺ collect time
⏺ store metrics

Benchmark experiment life cycle dbt Core

Pre-process
⏺ create K8s cluster
⏺ install Prometheus

Run experiment
⏺ run dbt command

Post-process
⏺ check command
status
⏺ collect metrics
⏺ store metrics
⏺ tear down
infrastructure

Benchmark experiment life cycle Airflow

Pre-process
⏺ create K8s cluster
⏺ install Prometheus
⏺ create Airflow
Deployment

Run experiment
⏺ trigger DAG to run

Post-process
⏺ check command
status
⏺ collect metrics
⏺ store metrics
⏺ tear down
infrastructure

Repository

We strongly believe that benchmarks should be public and
reproducible by anyone in the community, and for this reason we’ve
open-sourced this repository:
https://github.com/astronomer/cosmos-benchmark

https://github.com/astronomer/cosmos-benchmark

6. Results

Results

Platform
Airflow
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU
Utilization

Stddev CPU
Utilization

Max Memory
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

Results

Platform
Airflow
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU
Utilization

Stddev CPU
Utilization

Max Memory
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

https://github.com/astronomer/cosmos-benchmark/pull/4
https://github.com/astronomer/cosmos-benchmark/pull/5

https://github.com/astronomer/cosmos-benchmark/pull/4
https://github.com/astronomer/cosmos-benchmark/pull/5

Results

Platform
Airflow
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU
Utilization

Stddev CPU
Utilization

Max Memory
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

Airflow OSS
airflow dags
test

DbtBuildLocalO
perator dbt build single command 0:05:59 0.18 0.03 537 MiB

Airflow OSS
airflow dags
test DbtDag dbt run

multi command
(one per model) 0:27:26 0.19 0.25 1 GiB

https://github.com/astronomer/cosmos-benchmark/pull/6

https://github.com/astronomer/cosmos-benchmark/pull/6

Results

Platform
Airflow
Command Airflow DAG dbt Command Granuarity

Durati
on

Max CPU
Utilization

Stddev CPU
Utilization

Max Memory
Usage

dbt Cloud N/A N/A dbt build single command 0:05:10 N/A N/A N/A

dbt Core N/A N/A dbt run single command 0:05:05 0.39 0.06 306 MiB

dbt Core N/A N/A dbt run
multi command
(one per model) 0:31:50 0.39 0.06 306 MiB

Airflow OSS
airflow dags
test

DbtBuildLocalO
perator dbt build single command 0:05:59 0.18 0.03 537 MiB

Airflow OSS
airflow dags
test DbtDag dbt run

multi command
(one per model) 0:27:26 0.19 0.25 1 GiB

Airflow OSS
airflow dags
trigger

DbtBuildLocalO
perator dbt build single command 0:05:50 1.3 0.09 1.6 GB

Airflow OSS
airflow dags
trigger DbtDag dbt run

multi command
(one per model) 0:15:13 3 0.15 2.5 GB

https://github.com/astronomer/cosmos-benchmark/pull/7

https://github.com/astronomer/cosmos-benchmark/pull/7

7. Next steps

Next steps

https://github.com/astronomer/cosmos-benchmark

● Have a configuration-driven approach to run the tests - and track those
over time

● Leverage Airflow 3 APIs to trigger and monitor the status of Airflow jobs

● Store results consistently in a way we can track experiments over time -
publically

● Automate tests via the CI based on changes

● Collect more metrics

● Extend benchmark to run in Astro

https://github.com/astronomer/cosmos-benchmark

8. Take away

Performance/benchmark testing isn’t just about
running stress tools—it’s about designing fair,
reproducible, and meaningful experiments that

guide decision-making.

We need to have a Open Source standard to run
benchmarks on Airflow to allow the project to

continue being a leader among orchestration tools

Learn more about how to run dbt
with Apache Airflow and Cosmos

Thank you!
Questions?

#airflow-dbt Slack channel

Tati Al-ChueyrRahul Vats

