
Beyond Execution Dates: Empowering inference
execution and hyper-parameter tuning with

Airflow 3

Ankit Chaurasia
Rahul Vats

Each DAG run tied to a
unique
execution_date.

Event-driven workflow
triggers

Inflexible for on-demand ML
inference or hyperparameter
tuning

Workarounds such as
hacked timestamps
used by data engineers

Problem in Airflow 2.x with execution_date

Solution - AIP 83

Rename execution_date to
logical_date for clearer data
interval semantics and run

timing clarity

Remove uniqueness constraint
on logical_date, allowing

multiple DAG runs per interval
and null values

AIP83  The
Proposal

● Execution date ≠ actual run time
● It represented data interval start
● Caused confusion for new users
● Logical Date = better reflects purpose

Why Rename Execution Date?

Backfill & catch up

Depends_on_past

Challenges
After
Removing
Uniqueness
Constraint

Missing interval detection broke

Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6 Jan 6 Jan 6

If you try to retrieve xcom of the task from the prior run, which
run should it choose?

Challenges
After
Removing
Uniqueness
Constraint
Contd.

Airflow UI Grid View struggled to visualize multiple runs with
identical logical_date, causing user confusion

Restored uniqueness for logical_date while allowing
logical_date=NULL

Introduced run_after attribute to explicitly order DAG
runs chronologically, independent of logical_date

Preserved data interval-based scheduling behavior
alongside support for event-driven workflows

AIP-83
Amendment

1

Rename
execution_date to
logical_date

2

Run IDs as unique
DAG run
identifiers

3

Allow null
logical_date

4

Update logging,
API, CLI, and UI

5

Balance backward
compatibility and
flexibility

Technical Implementation & Migration Overview

Asset triggered DAG now has null logical date

From UI datepicker picks datetime now but we can send null in logical date here

TriggerDagRunOperator defaults to null logical_date, supporting parallel and event-driven runs

API and CLI require explicit logical_date or None to avoid ambiguity in runs

These changes improve intuitive operation while enabling advanced ML and event-driven pipelines

AIP 83 impact on Airflow features

For runs with no logical date / data interval, there is a key error if these vars are accessed from template /
context.

Launch N parallel DAG runs with different
hyperparameters using `logical_date=None`

Runs execute independently without
timestamp collisions, simplifying

orchestration

Aggregate results externally or through
downstream tasks for seamless

analysis

Native support removes complex
workarounds, speeding up model

experimentation

Improves resource utilization and
efficiency in ML pipeline

orchestration

Real-World Use Case - Hyperparameter Tuning
with Airflow 3

Hack: fake timestamps to bypass uniqueness.
Confusing + error-prone.

Hyperparameter
Tuning - Before
(Airflow 2.x)

Using `TriggerDagRunOperator` with `logical_date=None`
allows launching multiple parallel DAG runs without requiring
unique execution dates. This simplifies hyperparameter
tuning by enabling concurrent ad-hoc runs with different
configurations, accelerating ML workflows and
experimentation.

Enable Parallel
Hyperparameter
Tuning Runs in
Airflow 3.0

Before Airflow 3, executing on-demand inference pipelines
required complex workarounds to avoid conflicts from unique
execution_date constraints. Airflow 3 eliminates this by allowing
multiple ad-hoc DAG runs with logical_date=None to run
concurrently, ordered by run_after. This enhancement supports
real-time inference pipelines that dynamically handle incoming
requests and scale horizontally without conflicts. Additionally, the
improved UI distinctly separates these ad-hoc runs, enhancing
monitoring and operational visibility.

Real-World Use Case - Inference
Execution

Forced to assign fake execution_date.
UI cluttered with meaningless timestamps.

Inference
Execution -
Before
(Airflow 2.x)

1

Clean ad-hoc runs
Natural for batch inference, GenAI pipelines

Inference
Execution -
After (Airflow
3.0)

1

Inference
Execution -
Patterns

Push Pattern: Trigger via REST API
→ Website/API sends POST request with user
input

Poll Pattern: Event-driven via message queue
→ AssetWatcher listens for events (e.g., SQS
message)

Architecture
Example -
Push Pattern

Architecture
Example -
Poll Pattern

QUESTION?

The 2025 Apache
Airflow® Survey
is here!

Fill it out to for a free Airflow 3
Fundamentals or DAG Authoring in

Airflow 3 certification code

