Beyond Execution Dates: Empowering inference

execution and hyper-parameter tuning with
Airflow 3

Ankit Chaurasia
Rahul Vats

ASTRONODMER

Problem in Airflow 2.x with execution_date

-~ A"
AN
2023

Each DAG run tied to a
uhique

execution_date.

o

Event-driven workflow

triggers

s

Inflexible for on-demand ML
inference or hyperparameter

tuning

[

Workarounds such as

hacked timestamps
used by data engineers

ASTRONODMER

Solution - AIP 83

RRRRRRRRRR

Rename execution_date to

logical_date for clearer data

AIP—83 = The interval semantics and run

timing clarity

Proposal

Remove uniqueness constraint
on logical_date, allowing
multiple DAG runs per interval

and null values

ASTRONOMER

Why Rename Execution Date?

e EXxecution date # actual run time
k4 e |t represented data interval start
I---I e Caused confusion for new users

I&)d
e Logical Date = better reflects purpose

ASTRONODMER

Challenges
After

Removing

Uniqueness

Constraint

Backfill & catch up

ENEEENEN

Jan1 Jan2 Jan3 Jan4 Jan5 Jan6 Jan6

Missing interval detection broke

Depends_on_past

Jan 6

ASTRONODMER

Challenges

If you try to retrieve xcom of the task from the prior run, which

After run should it choose?

Removing

Uniqueness

Airflow Ul Grid View struggled to visualize multiple runs with
identical logical_date, causing user confusion

Constraint
Contd.

ASTRONODMER

AlIP-83

Amendment

Restored uniqueness for logical_date while allowing
logical_date=NULL

Introduced run_after attribute to explicitly order DAG
runs chronologically, independent of logical_date

Preserved data interval-based scheduling behavior
alongside support for event-driven workflows

\ 7

ASTRONOMER

Technical Implementation & Migration Overview

Rename Run IDs as unique Allow null Update logging, Balance backward
execution_dateto DAG run logical_date API, CLI, and Ul compatibility and
logical_date identifiers flexibility

ASTRONODMER

AIP 83 impact on Airflow features

Asset triggered DAG now has null logical date

From Ul datepicker picks datetime now but we can send null in logical date here

TriggerDagRunOperator defaults to null logical_date, supporting parallel and event-driven runs
APl and CLI require explicit logical_date or None to avoid ambiguity in runs
These changes improve intuitive operation while enabling advanced ML and event-driven pipelines

For runs with no logical date / data interval, there is a key error if these vars are accessed from template /
context.

ASTRONODMER

Real-World Use Case - Hyperparameter Tuning
with Airflow 3

Launch N parallel DAG runs with different
hyperparameters using logical_date=None’

~ 0~

Improves resource utilization and Runs execute independently without

efficiency in ML pipeline timestamp collisions, simplifying

orchestration

J
Aggregate results externally or through

workarounds, speeding up model downstream tasks for seamless

orchestration

Native support removes complex

experimentation analysis

Hyperparameter

for 1r in [0.001, 0.01, 0.1]:
trigger_dagrun(
dag_id="train_model",
execution_date=datetime.now() + timedelta(minutes=1i),

(Airflow 2.X)) conf={"learning_rate": 1r}

Tuning - Before

Hack: fake timestamps to bypass uniqueness.
Confusing + error-prone.

ASTRONODMER

Enable Parallel
Hyperparameter

Tuning Runs in
Airflow 3.0

TriggerDagRunOperator(
task_id="trigger_training",
trigger_dag_id="model_training_dag",
conf={"1r": 0.01},
logical_date=None

Using TriggerDagRunOperator with logical_date=None’
allows launching multiple parallel DAG runs without requiring
unique execution dates. This simplifies hyperparameter
tuning by enabling concurrent ad-hoc runs with different
configurations, accelerating ML workflows and
experimentation.

ASTRONODMER

Real-World Use Case - Inference
Execution

Before Airflow 3, executing on-demand inference pipelines
required complex workarounds to avoid conflicts from unique
execution_date constraints. Airflow 3 eliminates this by allowing
multiple ad-hoc DAG runs with logical_date=None to run
concurrently, ordered by run_after. This enhancement supports
real-time inference pipelines that dynamically handle incoming
requests and scale horizontally without conflicts. Additionally, the
improved Ul distinctly separates these ad-hoc runs, enhancing

monitoring and operational visibility.

trigger_dagrun(
dag_id="inference_pipeline",
Inference execution_date=datetime.utcnow(), |
conf={"input_path": "s3://bucket/batch_123.csv"}
)

Execution -

Before
(Airflow 2.x)

Forced to assign fake execution_date.
Ul cluttered with meaningless timestamps.

ASTRONODMER

Inference

trigger_dagrun(
dag_id="inference_pipeline",

ExeCUtion - conf={"input_path": "s3://bucket/batch_123.csv"},
. logical_date=None
After (Airflow >

3.0)

Clean ad-hoc runs
Natural for batch inference, GenAl pipelines

ASTRONODMER

Inference

Execution -
Patterns

Push Pattern: Trigger via REST API
- Website/API sends POST request with user

input

\ 7

<, Poll Pattern: Event-driven via message queue

- AssetWatcher listens for events (e.g., SQS

message)

ASTRONOMER

B

Formatted generic
newsletter of the day

ArChiteCtu re stored in S3

Website form
Exa m p I e — information as part of
the API call (conf)

: - \ Airflow dag

Push Pattern

REST API

&

Sample personalized
newsletter

ASTRONOMER

B

Formatted generic

newsletter of the day
stored in S3

Architecture

AssetWatcher

Example -

Message queue
POI I Pa tte rn Website form information

Website as part of the message

&

Sample personalized
newsletter

ASTRONOMER

QUESTION?

The 2025 Apache
Airflow® Survey

Is here!

RRRRRRRRRR

