AIRFLOW.
SUMMIT

Beyond Logs:
Unlocking Airflow 3.0
Observability with
OpenTelemetry Traces

Christos Bisias, G-Research

OPEN
RESEARCH | SOURCE
SOFTWARE

Introduction

e I'm a software engineer from Greece
e I'm part of the G-Research Open
Source team

OPEN
SOURCE
SOFTWARE

GR-0SS G

e G-Research is a leading quantitative research and technology firm

e G-Research is heavily investing in and using open source software

e The GR-OSS team is trying to leverage OSS to solve business
problems

OPEN
SOURCE
SOFTWARE

My background G

e | have been contributing to Open Source projects on behalf of
G-Research for the last 3.5 years

e Inthe past 1 year I've been doing a lot of work around
OpenTelemetry and Airflow

e | adjusted Airflow’s OTel implementation to make it support context
propagation (more on that later)

~
N

OPEN
SOURCE
SOFTWARE

Agenda G

e What OTel is? Why use it with Airflow?
e OpenTelemetry basics
o Traces and spans
o Span data and context
o Context propagation and mechanisms
e Demo
o Execute an Airflow dag that exports sub spans
o One of the tasks, makes a call to a running spring boot app
that will also export a span

~
N

OPEN
SOURCE
SOFTWARE

Why is my Dag slow? G

OPEN
SOURCE
SOFTWARE

What is OpenTelemetry? G

e OpenTelemetry is a collection of OS tools that are used for
collecting traces, logs and metrics from applications
o The collected data is later exported to visualization backends
o This presentation will focus on traces

~
N

OPEN
SOURCE
SOFTWARE

Why OpenTelemetry Traces? G

e OTelis technology agnostic
e It has a different client implementation for each programming
language
o Python, Java, Golang, etc.
e The OTel SDK can be added as a dependency to any framework or
application
e Especially useful in distributed systems
o We can track an operation spreading across multiple services

~
N

OPEN
SOURCE
SOFTWARE

Traces & Spans G

Let’'s assume that we have a large operation which consists of
multiple small steps like API calls, DB calls, calculations etc.
The collection of all the steps, will be a trace

o An entire DagRun
Each individual step that we are observing, will be a span

o Asingle task

Root Span (Entire DagRun)

Trace & Spans Visualization G SorTwARE
|

—J» Child 1 (Task1)

—J» child 2 (Task2)

Span

Span

OPEN
SOURCE
SOFTWARE

Why use OTel with Airflow? G

e We can create our own sub spans under tasks to observe
individual operations

e \We can also monitor external calls to public APIs or other services
running in our network

OPEN
RESEARCH | SOURCE

Span data & association SOFTWARE

1 . .
i H !
i H i
] 1]
i ! !
Trace_ID=1, Span_ID=0, Parent_Span_ID=null =====~ >
Trace_ID=1, Span_ID=1, Parent _Span_ID=0 ------ >
i i '
1 1 =
o o S |
! H
i i
frace_ID=1, Span_ID=4, Parent_Span_ » _
! i
H i
Trace_ID=1, Span_ID=2, Parent_Span_ID=0| ; >
| I
! i
! I
i i
! i

OPEN
SOURCE
SOFTWARE

OTel Specifications G

Spans are thread local and cannot be shared outside of the current

thread
This is done to ensure that each process is solely responsible for

handling its own spans

OPEN
SOURCE
SOFTWARE

Cross-service trace G

Taskl exits

HTTP call Response

s e

OPEN
RESEARCH | SOURCE

Context Propagation SomARe

Context propagation is the method of sharing a span’s context
across services in a distributed system

The context is used to create children spans

The format follows the W3C specification

W3C Context Example

traceparent: 00-0af7651916cd43dd8448eb211c80319c-00f067aa0ba902b7-01

TracelD

SpaniD

00-0af7651916cd43dd8448eb211c80319c-00f067aa0ba902b7-01

version trace flags .

OPEN
SOURCE
SOFTWARE

Propagation Mechanisms G

e Common mechanisms of context propagation

o HTTP calls
m Inthe HTTP headers
o gRPC calls

m In the metadata
o Message queues
m Within the message
e Custom mechanism depending on the system
o In Airflow we are propagating the context by storing it in the DB
and later retrieving it

N

OPEN
SOURCE
SOFTWARE

Capturing & Exporting Spans G

e Auto-instrumentation
o the instrumentation library automatically injects telemetry
collection code into the application at runtime without requiring
manual code changes
o data are collected for certain frameworks, databases, HTTP
clients and other common components
o this is strict, it can’'t monitor anything that the library doesn’t
recognize
e Manual code injection into the app
o the user has to write the code
o it provides flexibility to monitor almost anything

N

OPEN
SOURCE
SOFTWARE

‘ RESEARCH

Demo

OPEN
SOURCE
SOFTWARE

Demo - Setup Explained G

Airflow with OTel traces enabled in the config

An otel-collector service

Jaeger as a visualization backend

A Spring boot application running

o With OTel SDK for Java

e Both Airflow and the spring boot app will create spans and export
them to the common otel-collector

e The otel-collector will forward them to Jaeger

~
N

OPEN
SOURCE
SOFTWARE

Demo - Dag Code G

The tasks will

©)
©)

Create sub spans using context propagation

Hook the auto-instrumentation library to monitor a GET request
to a public API such as GitHub’s

Make a call to the spring boot app and pass the current context
in the HTTP headers

m The app will create a sub span with the context

OPEN

Demo - New Span > AET

@task
taskl (ti) :
context carrier = ti.context carrier

parent context = otel task tracer.extract(context carrier)

with otel task tracer.start child span(
span _name="partl with parent ctx",
parent context=parent context,
component="dag",

) as pl with ctx s:

logger.info("From partl with parent ctx.

OPEN
SOURCE
SOFTWARE

Demo - Inject context into G
the headers

@task
task2 (ti) :

context carrier = ti.context carrier

res = requests.get(

"http://java-tester:7777/api/work",

headers=context carrier,

timeout=25

OPEN
RESEARCH | SOURCE

Webserver Ul e

Dag
otel_test_dag

oo : >
CE Optons T° otel_test_dag

Schedule Latest Run Next Run

2025-09-07, 14:58:24 &

Overview Runs Tasks Events Code Details

B Last 24 hours 2025-09-07, 17:38:12 - 2025-09-08, 17:38:12

0) Failed Tasks 0) Failed Runs

Last 1 Dag Run

OPEN

Jaeger UI SOFTWARE

JAEGER Ul Search Compare System Architecture Monitor Q About Jaeger v
Airflow:
¢« v otel_test_dag

¥ Trace Timeline v @ Archive Trace

Trace Start September 7 2025, 14:59:03.¢ Duration 14.356s Services 2 Depth 6 Total Spans 10

Ous 3.59s 7.18s 10.77s 14.35s
Pe— | \ \ |
Service & Operation v > ¥ » Ous 3.59s 7.18s

10.77s 14.35s

"I AIrtlow otel_test_dag
2 I Airflow taski
VI Airflow part1_with_parent_ctx
52 I Airflow sub_span_without_setting_parent
VI Airflow get_repos_auto_instrumentation
| Airflow GET
I Airflow sub_span_start_as_current
I Airflow part2_with_parent_ctx

> | Airflow task2

Java.Tester Apiwork

OPEN
SOURCE
SOFTWARE

Next Topics to Research G

OpenTelemetry SDK initialization
When to use
o Simple vs Batch SpanProcessor
Span Attributes
Propagators
o Context inject() and extract()
SDK static context variable
o Starting and ending span manually
App or Request auto-instrumentation
OTel Metrics and visualization with Prometheus and Grafana

OPEN
SOURCE
SOFTWARE

O
!"-'lzif:l'

Connect with me Demo Code

