
Beyond Logs:
Unlocking Airflow 3.0
Observability with
OpenTelemetry Traces

Christos Bisias, G-Research

2

● I’m a software engineer from Greece
● I’m part of the G-Research Open

Source team

Introduction

Christos Bisias

GR-OSS

● G-Research is a leading quantitative research and technology firm
● G-Research is heavily investing in and using open source software
● The GR-OSS team is trying to leverage OSS to solve business

problems

3

My background

● I have been contributing to Open Source projects on behalf of
G-Research for the last 3.5 years

● In the past 1 year I’ve been doing a lot of work around
OpenTelemetry and Airflow

● I adjusted Airflow’s OTel implementation to make it support context
propagation (more on that later)

4

Agenda

● What OTel is? Why use it with Airflow?
● OpenTelemetry basics

○ Traces and spans
○ Span data and context
○ Context propagation and mechanisms

● Demo
○ Execute an Airflow dag that exports sub spans
○ One of the tasks, makes a call to a running spring boot app

that will also export a span

5

6

Why is my Dag slow?

What is OpenTelemetry?

● OpenTelemetry is a collection of OS tools that are used for
collecting traces, logs and metrics from applications
○ The collected data is later exported to visualization backends
○ This presentation will focus on traces

7

Why OpenTelemetry Traces?

● OTel is technology agnostic
● It has a different client implementation for each programming

language
○ Python, Java, Golang, etc.

● The OTel SDK can be added as a dependency to any framework or
application

● Especially useful in distributed systems
○ We can track an operation spreading across multiple services

8

Traces & Spans

● Let’s assume that we have a large operation which consists of
multiple small steps like API calls, DB calls, calculations etc.

● The collection of all the steps, will be a trace
○ An entire DagRun

● Each individual step that we are observing, will be a span
○ A single task

9

Trace & Spans Visualization

10

Why use OTel with Airflow?

● We can create our own sub spans under tasks to observe
individual operations

● We can also monitor external calls to public APIs or other services
running in our network

11

Span data & association

12

OTel Specifications

● Spans are thread local and cannot be shared outside of the current
thread

● This is done to ensure that each process is solely responsible for
handling its own spans

13

Cross-service trace

14

Context Propagation

● Context propagation is the method of sharing a span’s context
across services in a distributed system

● The context is used to create children spans
● The format follows the W3C specification

15

Propagation Mechanisms

● Common mechanisms of context propagation
○ HTTP calls

■ In the HTTP headers
○ gRPC calls

■ In the metadata
○ Message queues

■ Within the message
● Custom mechanism depending on the system

○ In Airflow we are propagating the context by storing it in the DB
and later retrieving it

16

Capturing & Exporting Spans

● Auto-instrumentation
○ the instrumentation library automatically injects telemetry

collection code into the application at runtime without requiring
manual code changes

○ data are collected for certain frameworks, databases, HTTP
clients and other common components

○ this is strict, it can’t monitor anything that the library doesn’t
recognize

● Manual code injection into the app
○ the user has to write the code
○ it provides flexibility to monitor almost anything

17

Demo

18

Demo - Setup Explained

● Airflow with OTel traces enabled in the config
● An otel-collector service
● Jaeger as a visualization backend
● A Spring boot application running

○ With OTel SDK for Java
● Both Airflow and the spring boot app will create spans and export

them to the common otel-collector
● The otel-collector will forward them to Jaeger

19

Demo - Dag Code

● The tasks will
○ Create sub spans using context propagation
○ Hook the auto-instrumentation library to monitor a GET request

to a public API such as GitHub’s
○ Make a call to the spring boot app and pass the current context

in the HTTP headers
■ The app will create a sub span with the context

20

Demo - New Span

21

@task

def task1(ti):

 context_carrier = ti.context_carrier

 parent_context = otel_task_tracer.extract(context_carrier)

 with otel_task_tracer.start_child_span(

 span_name="part1_with_parent_ctx",

 parent_context=parent_context,

 component="dag",

) as p1_with_ctx_s:

 # Some work.

 logger.info("From part1_with_parent_ctx.")

Demo - Inject context into
the headers

@task

def task2(ti):

context_carrier = ti.context_carrier

res = requests.get(

"http://java-tester:7777/api/work",

headers=context_carrier,

timeout=25

)

22

Webserver UI

Jaeger UI

Next Topics to Research

● OpenTelemetry SDK initialization
● When to use

○ Simple vs Batch SpanProcessor
● Span Attributes
● Propagators

○ Context inject() and extract()
● SDK static context variable

○ Starting and ending span manually
● App or Request auto-instrumentation
● OTel Metrics and visualization with Prometheus and Grafana

25

Connect with me Demo Code

Thank you! Questions?

