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Introduction

e I'm a software engineer from Greece
e I'm part of the G-Research Open
Source team
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GR-0SS G

e G-Research is a leading quantitative research and technology firm

e G-Research is heavily investing in and using open source software

e The GR-OSS team is trying to leverage OSS to solve business
problems
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My background G

e | have been contributing to Open Source projects on behalf of
G-Research for the last 3.5 years

e Inthe past 1 year I've been doing a lot of work around
OpenTelemetry and Airflow

e | adjusted Airflow’s OTel implementation to make it support context
propagation (more on that later)
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Agenda G

e What OTel is? Why use it with Airflow?
e OpenTelemetry basics
o Traces and spans
o Span data and context
o Context propagation and mechanisms
e Demo
o Execute an Airflow dag that exports sub spans
o One of the tasks, makes a call to a running spring boot app
that will also export a span
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Why is my Dag slow? G
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What is OpenTelemetry? G

e OpenTelemetry is a collection of OS tools that are used for
collecting traces, logs and metrics from applications
o The collected data is later exported to visualization backends
o This presentation will focus on traces

~
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Why OpenTelemetry Traces? G

e OTelis technology agnostic
e It has a different client implementation for each programming
language
o Python, Java, Golang, etc.
e The OTel SDK can be added as a dependency to any framework or
application
e Especially useful in distributed systems
o We can track an operation spreading across multiple services
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Traces & Spans G

Let’'s assume that we have a large operation which consists of
multiple small steps like API calls, DB calls, calculations etc.
The collection of all the steps, will be a trace

o An entire DagRun
Each individual step that we are observing, will be a span

o Asingle task
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Why use OTel with Airflow? G

e We can create our own sub spans under tasks to observe
individual operations

e \We can also monitor external calls to public APIs or other services
running in our network
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Span data & association SOFTWARE
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OTel Specifications G

Spans are thread local and cannot be shared outside of the current

thread
This is done to ensure that each process is solely responsible for

handling its own spans
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Cross-service trace G

Taskl exits

HTTP call Response

s e
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Context Propagation SomARe

Context propagation is the method of sharing a span’s context
across services in a distributed system

The context is used to create children spans

The format follows the W3C specification

W3C Context Example

traceparent: 00-0af7651916cd43dd8448eb211c80319c-00f067aa0ba902b7-01

TracelD

SpaniD

00-0af7651916cd43dd8448eb211c80319c-00f067aa0ba902b7-01

version trace flags .
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Propagation Mechanisms G

e Common mechanisms of context propagation

o HTTP calls
m Inthe HTTP headers
o gRPC calls

m In the metadata
o Message queues
m  Within the message
e Custom mechanism depending on the system
o In Airflow we are propagating the context by storing it in the DB
and later retrieving it
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Capturing & Exporting Spans G

e Auto-instrumentation
o the instrumentation library automatically injects telemetry
collection code into the application at runtime without requiring
manual code changes
o data are collected for certain frameworks, databases, HTTP
clients and other common components
o this is strict, it can’'t monitor anything that the library doesn’t
recognize
e Manual code injection into the app
o the user has to write the code
o it provides flexibility to monitor almost anything
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Demo - Setup Explained G

Airflow with OTel traces enabled in the config

An otel-collector service

Jaeger as a visualization backend

A Spring boot application running

o With OTel SDK for Java

e Both Airflow and the spring boot app will create spans and export
them to the common otel-collector

e The otel-collector will forward them to Jaeger
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Demo - Dag Code G

The tasks will

©)
©)

Create sub spans using context propagation

Hook the auto-instrumentation library to monitor a GET request
to a public API such as GitHub’s

Make a call to the spring boot app and pass the current context
in the HTTP headers

m The app will create a sub span with the context
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Demo - New Span > AET

@task
taskl (ti) :
context carrier = ti.context carrier

parent context = otel task tracer.extract(context carrier)

with otel task tracer.start child span(
span _name="partl with parent ctx",
parent context=parent context,
component="dag",

) as pl with ctx s:

logger.info("From partl with parent ctx.
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Demo - Inject context into G
the headers

@task
task2 (ti) :

context carrier = ti.context carrier

res = requests.get(

"http://java-tester:7777/api/work",

headers=context carrier,

timeout=25
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Webserver Ul e

Dag
otel_test_dag

oo : >
CE Optons T° otel_test_dag

Schedule Latest Run Next Run

2025-09-07, 14:58:24 &

Overview Runs Tasks Events Code Details

B Last 24 hours 2025-09-07, 17:38:12 - 2025-09-08, 17:38:12

0) Failed Tasks 0) Failed Runs

Last 1 Dag Run
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JAEGER Ul Search Compare System Architecture Monitor Q About Jaeger v
Airflow:
¢« v otel_test_dag

¥  Trace Timeline v @ Archive Trace

Trace Start September 7 2025, 14:59:03.¢ Duration 14.356s Services 2 Depth 6 Total Spans 10

Ous 3.59s 7.18s 10.77s 14.35s
Pe— | \ \ |
Service & Operation v > ¥ » Ous 3.59s 7.18s

10.77s 14.35s

"I AIrtlow otel_test_dag
2 I Airflow taski
VI Airflow part1_with_parent_ctx
52 I Airflow sub_span_without_setting_parent
VI Airflow get_repos_auto_instrumentation
| Airflow GET
I Airflow sub_span_start_as_current
I Airflow part2_with_parent_ctx

> | Airflow task2

Java.Tester Apiwork
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Next Topics to Research G

OpenTelemetry SDK initialization
When to use
o Simple vs Batch SpanProcessor
Span Attributes
Propagators
o Context inject() and extract()
SDK static context variable
o Starting and ending span manually
App or Request auto-instrumentation
OTel Metrics and visualization with Prometheus and Grafana
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