
Airflow Deferrable Capabilities
Boosting dbt Core workflows performance

Pankaj Koti
Senior Software Engineer

@ Astronomer

Pankaj Singh
Senior Software Engineer

@ Astronomer

Tati Al-Chueyr
Principal Software Engineer

@ Astronomer

Airflow Summit, Seattle, USA  8 October 2025

Agenda

1. What is dbt
2. Why Cosmos
3. Performance challenge
4. Strategy 1 Airflow Deferrable
5. Strategy 2 Watcher
6. Takeaways

1. What is dbt

dbt Core what is it?
dbt Core is an open-source tool that empowers data practitioners to transform

$ pip install dbt-core

dbt Core project structure & syntax

dbt Core pipeline visualisation

dbt Core limitations

dbt Core does not…

● Schedule jobs in production

● Run scalable extract and load tasks

● Have centralised logging or alerts handling

● Make the projectʼs documentation available to other team members

dbt Labs, creator and maintainer of dbt Core, solves these issues via their proprietary
and commercial platform, dbt Cloud.

2. Why Cosmos

Why Cosmos?
Cosmos “magicallyˮ translates dbt pipelines in Airflow DAGs

$ pip install astronomer-cosmos

Why Cosmos?
import os

from datetime import datetime

from pathlib import Path

from cosmos import DbtDag, ProjectConfig, ProfileConfig

from cosmos.profiles import PostgresUserPasswordProfileMapping

DEFAULT_DBT_ROOT_PATH = Path(__file__).parent / "dbt"

DBT_ROOT_PATH = Path(os.getenv("DBT_ROOT_PATH", DEFAULT_DBT_ROOT_PATH))

profile_config = ProfileConfig(

 profile_name="jaffle_shop",

 target_name="dev",

 profile_mapping=PostgresUserPasswordProfileMapping(

 conn_id="airflow_db",

 profile_args={"schema": "public"},

),

)

basic_cosmos_dag = DbtDag(

 project_config=ProjectConfig(

 DBT_ROOT_PATH / "jaffle_shop",

),

 profile_config=profile_config,

 schedule="@daily",

 start_date=datetime(2023, 1, 1),

 catchup=False,

 dag_id="basic_cosmos_dag",

)

Cosmos adoption

● 20M+ downloads in PyPI per month August-September 2025
● 1k stars in Github
● Millions of Cosmos tasks are run every month 20% Astro customers)

The driving force behind Cosmos
https://github.com/astronomer/astronomer-cosmos/

144 contributors

https://github.com/astronomer/astronomer-cosmos/
https://contrib.rocks/preview?repo=astronomer%2Fastronomer-cosmos

3. Performance challenge

Performance has been a priority

1.2.5 1.3 DBT
LS FILE

1.4 1.5 1.6

DAG Parsing time 000008 000002 000007 000002 000002

Task Run time 000009 000008 000006 000005 000004

Task Queue time 000009 000004 000005 000001 000001

DAG Run time 000129 000055 000118 000043 000042

Slides https://airflowsummit.org/slides/2024/40Overcoming-Performance-Hurdles-in-Integrating-dbt-with-Airflow.pdf
Recording: https://www.youtube.com/watch?v=gnJPFGvqLzU

https://airflowsummit.org/slides/2024/40-Overcoming-Performance-Hurdles-in-Integrating-dbt-with-Airflow.pdf
https://www.youtube.com/watch?v=gnJPFGvqLzU

The cost of running dbt commands
The following approaches accomplish the same outcome.
Which one is faster?

$ dbt build $ dbt seed
$ dbt run
$ dbt test

$ dbt seed --select raw_customers
$ dbt seed --select raw_orders
$ dbt seed --select raw_payments

$ dbt run --select stg_customers
$ dbt run --select stg_orders
$ dbt run --select stg_payments
$ dbt run --select customers
$ dbt run --select orders

$ dbt test --select stg_customers
$ dbt test --select stg_orders
$ dbt test --select stg_payments
$ dbt test --select customers
$ dbt test --select orders

cmd: 1 # cmd: 3 #cmd: 13

The cost of running dbt

17s

34s

61s

$ dbt build $ dbt seed
$ dbt run
$ dbt test

$ dbt seed --select raw_customers
$ dbt seed --select raw_orders
$ dbt seed --select raw_payments

$ dbt run --select stg_customers
$ dbt run --select stg_orders
$ dbt run --select stg_payments
$ dbt run --select customers
$ dbt run --select orders

$ dbt test --select stg_customers
$ dbt test --select stg_orders
$ dbt test --select stg_payments
$ dbt test --select customers
$ dbt test --select orders

These are the total times to run the same example pipeline Jaffle Shop) with dbt Core
1.10.1 using Snowflake in the three ways described previously (using M1 Pro)

cmd: 1 # cmd: 3 #cmd: 13

Reducing task execution time with Cosmos 1.10

from datetime import datetime

from cosmos import DbtDag, ProjectConfig, ProfileConfig

from include.constants import jaffle_shop_path

project_config = ProjectConfig(

 dbt_project_path=jaffle_shop_path,

)

profile_config = ProfileConfig(

 profile_name="jaffle_shop",

 target_name="dev",

 profiles_yml_filepath=jaffle_shop_path / "profiles.yml",

)

snowflake_dag = DbtDag(

 project_config=project_config,

 profile_config=profile_config,

 start_date=datetime(2023, 1, 1),

 dag_id="snowflake_dag",

 tags=["profiles"],

)

Standard behaviour of running
one task per dbt node in
Cosmos

48s

Reducing task execution time with Cosmos 1.10

Running one task per dbt node
type with Cosmos

from airflow.sdk import DAG

from cosmos import DbtRunLocalOperator, DbtSeedLocalOperator, DbtTestLocalOperator,

ProfileConfig

from include.constants import jaffle_shop_path

with DAG("snowflake_dag_per_resource") as dag:

 seed = DbtSeedLocalOperator(

 task_id="seed",

 profile_config=profile_config,

 project_dir=jaffle_shop_path,

)

 run = DbtRunLocalOperator(

 task_id="run",

 profile_config=profile_config,

 project_dir=jaffle_shop_path,

)

 test = DbtTestLocalOperator(

 task_id="test",

 profile_config=profile_config,

 project_dir=jaffle_shop_path,

)

 seed >> run >> test

27s

Reducing task execution time with Cosmos 1.10

Running one task for the whole
dbt workflow with Cosmosfrom airflow.sdk import DAG

from cosmos import DbtBuildLocalOperator, ProfileConfig

from include.constants import jaffle_shop_path

profile_config = ProfileConfig(

 profile_name="jaffle_shop",

 target_name="dev",

 profiles_yml_filepath=jaffle_shop_path / "profiles.yml",

)

with DAG("snowflake_dag_single_task") as dag:

 build = DbtBuildLocalOperator(

 task_id="build",

 profile_config=profile_config,

 project_dir=jaffle_shop_path,

)

 build

20s

Cosmos & dbt performance

1 command 3 commands 13 commands

dbt Core 17s 24s 61s

dbt Fusion 15s 26s 74s

Cosmos with dbt Core (*) 20s 27s 48s

(*) Using the $ airflow dags test command with Cosmos 1.11.0a1, Airflow 3.0.2, dbt Core
1.10 (installed in the same Python virtualenv as Airflow and Cosmos), against Snowflake. In
practice, when using a production Airflow deployment such as Astro, the latency will be higher,
due to their distributed nature.

Challenge

Is it possible to give users a fine-grained visualisation and retry per model capabilities
without running a dbt command for every seed or model?

4. Strategy 1: Airflow Deferrable

Strategy 1 ExecutionMode.AIRFLOW_ASYNC

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

pre-compile
SQL

with dbt Run SQL
transformations

using Airflow native
deferrable
operators

Setup task

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

Strategy 1 ExecutionMode.AIRFLOW_ASYNC

Strategy 1 ExecutionMode.AIRFLOW_ASYNC

Strategy 1 ExecutionMode.AIRFLOW_ASYNC

Execution mode Time to run project (minutes)

dbt run 13

Cosmos 1.9 (*) with ExecutionMode.LOCAL Airflow with a local astro-cli
setup)

11

Cosmos 1.9 (*) with ExecutionMode.AIRFLOW_ASYNC Airflow with a local
astro-cli setup)

11

Cosmos 1.11a6 (**) with ExecutionMode.AIRFLOW_ASYNC Airflow with a
local astro-cli setup)

7

(*) Using Cosmos 1.9 with Airflow 3.0.2, dbt Core 1.10 (installed in the same Python virtualenv as Airflow and Cosmos),
against Postgres. We are using a dbt project that has 129 models.
(**) Cosmos 1.11a6 has two main improvements regarding the AIRFLOW_ASYNC, originally released in Cosmos 1.9:

● Use of XCom instead of Remote object store to exchange compiled SQL files #1934
● Reuse Python virtualenv across tasks running in the same worker node #1939

Performance improvements

https://github.com/astronomer/cosmos-benchmark/pull/9?utm_source=chatgpt.com
https://github.com/astronomer/astronomer-cosmos/pull/1934
https://github.com/astronomer/astronomer-cosmos/pull/1939

Strategy 1 ExecutionMode.AIRFLOW_ASYNC

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

Pros
● Reduced benchmark Airflow DAG run time by 36%
● Single dbt command invocation (less CPU/memory allocation)
● Non-blocking transformations in the data warehouse with Airflow deferrable operators

Cons
● Currently only supports dbt models
● Currently only supports BigQuery
● Implementation specific per data warehouse
● The dbt project cannot have models with a metadata-dependency on other models
● Some users reported issues related to Airflow deferrable operators, which can be

challenging to reproduce
● Only works with dbt Core (not dbt Fusion)

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

Next steps

ExecutionMode.AIRFLOW_ASYNC

1. Available since Cosmos 1.9 for BigQuery
2. Significant performance improvements in Cosmos 1.11 pre-releases
3. We need feedback!
4. Maybe add non-async version
5. Weʼve introduced telemetry to evaluate the adoption
6. Weʼd love contributions

https://github.com/astronomer/astronomer-cosmos/issues?q=is%3Aissue%20state%3Aopen%20label%3Aexecution%3Aasync

5. Strategy 2: Watcher

Strategy 2 ExecutionMode.WATCHER

run dbt build
in a single

Airflow task

all the other
tasks are
sensors

Setup task

https://github.com/astronomer/astronomer-cosmos/issues/1950

https://github.com/astronomer/astronomer-cosmos/issues/1950

Strategy 2 ExecutionMode.WATCHER

https://docs.getdbt.com/reference/programmatic-invocations#registering-callbacks

https://docs.getdbt.com/reference/programmatic-invocations#registering-callbacks

Strategy 2 ExecutionMode.WATCHER

Execution mode Number of threads Time to run project (minutes)

dbt build in the CLI 4 6  7

dbt run for each model individually 30

Cosmos default ExecutionMode.LOCAL in Astro CLI locally 10  15

Cosmos proposed ExecutionMode.WATCHER in Astro CLI locally 1 26

2 14

4 7

8 4

16 2

The ExecutionMode.WATCHER in Airflow with an Astro deployment (A10 8 5

https://github.com/google/fhir-dbt-analytics

Performance improvements

https://github.com/google/fhir-dbt-analytics

Strategy 2 ExecutionMode.WATCHER

Pros
● Reduced DAG run time to 1/5th of the original time
● Single dbt run

○ generates unified run_results.json
○ support dbt pre-hook & post-hook

● Data warehouse-agnostic implementation

Cons/Current Limitations
● Airflow worker is blocked by transformations happening in the data warehouse
● Retries have the same performance as ExecutionMode.LOCAL
● Currently relies on dbt and Airflow being installed in the same Python venv (some

users report conflicts between dependencies)
● Unclear how these features should work: Cosmos callback, Airflow datasets/assets

and OpenLineage events

https://github.com/astronomer/astronomer-cosmos/issues/1950

https://github.com/astronomer/astronomer-cosmos/issues/1950

Next steps

ExecutionMode.WATCHER

1. We successfully ran a PoC during August 2025
2. First release estimate: end of October 2025 (available in 1.11.0a6)
3. Work on making sensors deferrable
4. We need feedback!
5. Weʼd love contributions

https://github.com/astronomer/astronomer-cosmos/issues?q=is%3Aissue%20state%3Aopen%20label%3Aexecution%3Awatcher

6. Takeaways

Takeaways

1. To run the same dbt pipeline with multiple dbt
command is slow

2. To use Airflow deferrable operators allows to
not wait for the transformation in the data
warehouse, which can save 36% DAG runtime

3. It is not always possible to pre-compile a dbt
project

4. The watcher approach reduces the DAG
runtime up to 80% and it is agnostic to
data-warehouse

5. We need feedback and help!

Learn more about how to run dbt
with Apache Airflow and Cosmos

The 2025 Apache
Airflow® Survey
is here!

Fill it out to for a free Airflow 3
Fundamentals or DAG Authoring in

Airflow 3 certification code

Thank you!
Questions?

#airflow-dbt Slack channel

Pankaj Koti Pankaj Singh Tati Al-Chueyr

