Boosting dbt Core workflows perforfna’nce
Airflow Deferrable Capabilities

Pankaj Koti Pankaj Singh ~ Tati Al-Chueyr .
Senior Software Engineer Senior Software Engineer Principal Software Engineer
@ Astronomer @ Astronomer. @ Astronomer

Airflow Summit, Seattle, USA - 8 October 2025
ASTRONDOMER

Agenda

O bk wWDN -

What is dbt

Why Cosmos

Performance challenge
Strategy 1: Airflow Deferrable
Strategy 2: Watcher
Takeaways

1. What is dbt

dbt Core what is it?

dbt Core is an open-source tool that empowers data practitioners to transform

...

. - : ".* :
.ll : Data Warehouse : : e
" -1
: E Data : o :
Sidayansad ; - | 2 Raw data Transformed |- B consumers L Nesd :

......... load
: . / BI Tools : .
: Q : i

......................

$ pip install dbt-core

dbt Core project structure & syntax

-» jaffle_shop » jaffle_shop x cat models/staging/stg_payments.sql
g with source as (
— dbt_project.yml
F— LICENSE {#-
— macros Normally we would select from the table here, but we are using seeds to load
— drop_table.sql our data in this project
L— generate_alias_name.sql #}
models select * from {{ ref('raw_payments') }}
F— customers.sql
— docs.md),
— orders.sql
— overview.md renamed as (
F— schema.yml
L— staging
F— schema.yml
— stg_customers.sql
— stg_orders.sql
L— stg_payments.sql
packages.yml
profiles.yml
README . md
seeds
F— raw_customers.csv)
F— raw_orders.csv
L— raw_payments.csv

select
id as payment_id,
order_id,
payment_method,

-- Tamount” is currently stored in cents, so we convert it to dollars
amount / 100 as amount

from source

|
|
=
|
|
|
|
|
|
|
|
|
|
=
=
—
et

select * from renamed

5 directories, 19 files

dbt Core pipeline visualisation

Lineage Graph

raw_customers

raw_orders

raw_payments

All selected jaffle_shop untagged

stg_customers

customers

stg_orders

stg_payments Sl

Update Graph

dbt Core limitations

dbt Core does not...

e Schedule jobs in production
e Run scalable extract and load tasks
e Have centralised logging or alerts handling

e Make the project's documentation available to other team members

dbt Labs, creator and maintainer of dbt Core, solves these issues via their proprietary
and commercial platform, dbt Cloud.

2. Why Cosmos

Why Cosmos?

Cosmos “magically” translates pipelines in DAGs

X dbt

Lineage Graph

raw_customers
raw_orders

raw_payments

All selected jaffle_shop

untagged

stg_customers

stg_orders

stg_payments

customers

orders

Update Graph X

raw_customers_seed
DbtSeedLocalOperator

v success

stg_customers + 2 Tasks
Task Group

| v success

raw_orders_seed
DbtSeedLocalOperator

stg_orders + 2 Tasks
Task Group

customers + 2 Tasks
Task Group

' success
e
raw_payments_seed stg_payments + 2 Tasks orders + 2 Tasks
DbtSeedLocalOperator Task Group Task Group
v success v success
N

install astronomer-cosmos

Why Cosmos?

import os

from datetime import datetime
from pathlib import Path

from cosmos import DbtDag, ProjectConfig, ProfileConfig /\lrfﬂ()VV
from cosmos.profiles import PostgresUserPasswordProfileMapping

DEFAULT DBT_ROOT _PATH = Path(__file).parent / "dbt"
DBT_ROOT_PATH = Path(os.getenv("DBT_ROOT_PATH", DEFAULT_DBT_ROOT_PATH))

raw_customers_seed

profile_config = ProfileConfig(® success
profile_name="jaffle_shop", DbtSeedLocalOperator
target_name="dev",
profile_mapping=PostgresUserPasswordProfileMapping(raw_orders_seed
conn_id="airflow_db", ;:{;CC;SE -
t
profile_args={"schema": "public"}, —
)
) raw_payments_seed
. @ success
basic_cosmos_dag = DbtDag(DbtSeedLocalOperator

project_config=ProjectConfig(
DBT_ROOT_PATH / "jaffle_shop",
))
profile_config=profile_config,
schedule="@daily",
start_date=datetime(, 1, 1),
catchup=False,
dag_id="basic_cosmos_dag",

stg_customers
@ success
+ 2 tasks

stg_orders
@ success
+ 2 tasks

stg_payments
@ success
+ 2 tasks

customers
@ success
+ 2 tasks

orders
@ success
+ 2 tasks

Cosmos adoption

e 20M+ downloads in PyPI per month (August-September 2025)
e Tk stars in Github
e Millions of Cosmos tasks are run every month (>20% Astro customers)

[astronomer-cosmos [airflow-dbt "] —

oooooo

The driving force behind Cosmos

https://qithub.com/astronomer/astronomer-cosmos/

¢O2LeTHT200@
9003090028
$HL990904 "QIEOG@
?ﬁ&@@@@MQWtQ

n'.ﬂﬂ’*@@n“
@ﬁﬁﬁsﬂﬁﬁﬁuﬂu
ced

144 contributors

https://github.com/astronomer/astronomer-cosmos/
https://contrib.rocks/preview?repo=astronomer%2Fastronomer-cosmos

3. Performance challenge

Performance has been a priority

DAG Parsing time

Task Run time

Task Queue time

DAG Run time

Slides https://airflowsummit.org/slides/2024/40-Overcoming-Performance-Hurdles-in-Integrating-dbt-with-Airflow.pdf

1.2.5

00:00:08

00:00:09

00:00:09

00:01:29

1.3 (DBT
LS FILE)

00:00:02

00:00:08

00:00:04

00:00:55

1.4

00:00:07

00:00:06

00:00:05

00:01:18

1.5

00:00:02

00:00:05

00:00:01

00:00:43

1.6

00:00:02

00:00:04

00:00:01

00:00:42

Recording: https://www.youtube.com/watch?v=gnJPFGvqglL zU

https://airflowsummit.org/slides/2024/40-Overcoming-Performance-Hurdles-in-Integrating-dbt-with-Airflow.pdf
https://www.youtube.com/watch?v=gnJPFGvqLzU

The cost of running dbt commands

The following approaches accomplish the same outcome.
Which one is faster?

#cmd: 1

cmd: 3

$ dbt build

$ dbt seed
$ dbt run
$ dbt test

Ur A

Uy 0 Ur > U

Uy 0y Ur Uy

dbt
dbt
dbt

dbt
dbt
dbt
dbt
dbt

dbt
dbt
dbt
dbt
dbt

seed --select raw customers
seed --select raw orders
seed —--select raw payments

run --select stg customers
run --select stg orders

run --select stg payments
run --select customers

run --select orders

test --select stg customers
test --select stg orders
test --select stg payments
test —--select customers
test —--select orders

The cost of running dbt

These are the total times to run the same example pipeline (Jaffle Shop) with dbt Core
1.10.1 using Snowflake in the three ways described previously (using M1 Pro)

#cmd: 1 #cmd: 3
dbt build
; o S dbt seed $ dbt seed --select raw customers
$ dbt run $ dbt seed --select raw orders
175 $ dbt test $ dbt seed --select raw payments
$ dbt run --select stg customers
34s $ dbt run --select stg orders
$ dbt run --select stg payments
$ dbt run --select customers
$ dbt run --select orders
dbt test --select stg customers

Uy 0y Ur Uy

dbt

test --select

stg orders

dbt test --select stg payments
dbt test --select customers
dbt test --select orders

Reducing task execution time with Cosmos 1.10

from datetime import datetime
from cosmos import DbtDag, ProjectConfig, ProfileConfig
from include.constants import jaffle_shop_path

project_config = ProjectConfig(
dbt_project_path=jaffle_shop_path,

profile_config = ProfileConfig(
profile_name="jaffle_shop",
target_name="dev",

profiles_yml_ filepath=jaffle_shop path / "profiles.yml",

snowflake_dag = DbtDag(
project_config=project_config,
profile_config=profile_config,
start_date=datetime(, 1, 1),
dag_id="snowflake_dag",
tags=["profiles"],

Standard behaviour of running

one task per dbt node in

Cosmos

stg_payments
Task Group

orders
Task Group

stg_orders
Task Group

raw_orders_seed run
ob: (Operator ——{ DbtRunLocalOperator -

customers
Task Group

Iru
o 0o

stg_customers
Task Group

Reducing task execution time with Cosmos 1.10

from airflow.sdk import DAG

from cosmos import DbtRunLocalOperator, DbtSeedLocalOperator, DbtTestLocalOperator,

ProfileConfig

from include.constants import jaffle_shop_path

with DAG("snowflake_dag per_resource") as dag:

seed = DbtSeedLocalOperator(
task_id="seed",
profile_config=profile_config,
project_dir=jaffle_shop_path,

run = DbtRunLocalOperator(
task_id="run",
profile_config=profile_config,
project_dir=jaffle_shop_path,

test = DbtTestLocalOperator(
task_id="test",
profile_config=profile_config,
project_dir=jaffle_shop_path,

seed >> run >> test

Running one task per dbt node
type with Cosmos

seed
DbtSeedLocalOperator
+ success

run
DbtRunLocalOperator
' success

test
DbtTestLocalOperator

+ success

27s

Reducing task execution time with Cosmos 1.10

Running one task for the whole
dbt workflow with Cosmos

from airflow.sdk import DAG

from cosmos import DbtBuildLocalOperator, ProfileConfig

from include.constants import jaffle_shop_path

profile_config = ProfileConfig(

profile name="jaffle_shop", build
target_name="dev", DbtBuildLocalOperator
profiles_yml_filepath=jaffle_shop_path / "profiles.yml", v success

)

with DAG("snowflake_dag_single_task") as dag: :2()55

build = DbtBuildLocalOperator(
task_id="build",
profile_config=profile_config,
project_dir=jaffle_shop_path,

)

build

Cosmos & dbt performance

1 command 3 commands
dbt Core 17s 24s
dbt Fusion 15s 26s
Cosmos with dbt Core (*) 20s 27s

13 commands

61s

74s

48s

(*)Usingthe $ airflow dags test command with Cosmos 1.11.0a1, Airflow 3.0.2, dbt Core
1.10 (installed in the same Python virtualenv as Airflow and Cosmos), against Snowflake. In
practice, when using a production Airflow deployment such as Astro, the latency will be higher,

due to their distributed nature.

Challenge

Is it possible to give users a fine-grained visualisation and retry per model capabilities
without running a dbt command for every seed or model?

| stg_customers + 2 Tasks
1 Task Group

| raw_customers_seed
‘| DbtSeedLocalOperator

| |
e —) L] customers + 2 Tasks
| raw_orders_seed - | stg_orders +2Tasks |- -
Task Group
‘| DbtSeedLocalOperator — Task Group S|
v success
' | e R
| raw_payments_seed -| stg_payments + 2 Tasks | | orders + 2 Tasks
‘| DbtSeedLocalOperator — Task Group * | Task Group
’ v/ success o v success

4. Strategy 1. Airflow Deferrable

Strategy 1 ExecutionMode .ATRFLOW ASYNC

| raw_customers_seed | stg_customers_run | -~ - - -
‘| DbtSeedAirflowAsyncOp... [—] DbtRunAirflowAsyncOper... |5 = =~ = = = =~ = = =

Setup task 1 - @ J

customers_run

pre-compile | raw_orders_seed stg_orders_run B 1A oWy REOpE! .. -
‘| DbtSeedAirflowAsyncOp... |—1 DbtRunAirflowAsyncOper... | |
sQL =D i
with dbt e | . RUN SQL
| raw_payments_seed stg_payments_run | | || orders_run :
‘| DbtSeedAirflowAsyncOp... [—{ DbtRunAirflowAsyncOper...] DbtRunAirflowAsyncOper... |- tra nsformations
v success v success ’ v success ’ . . .
using Airflow native

deferrable
operators

https://astronomer.qgithub.io/astronomer-cosmos/getting started/async-execution-mode.html

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

Strategy 1 ExecutionMode .ATRFLOW ASYNC

| raw_customers_seed
‘| DbtSeedAirflowAsyncOp...

v success

| stg_customers_run
1 DbtRunAirflowAsyncOper...

Vv success

3 dbtrun

Mocked
G dbt-bigquery

| raw_orders_seed
‘| DbtSeedAirflowAsyncOp...

v success

| stg_orders_run
1 DbtRunAirflowAsyncOper...

Vv success

customers_run
DbtRunAirflowAsyncOper...
Vv success

| raw_payments_seed
‘| DbtSeedAirflowAsyncOp...

v/ success

| stg_payments_run
1 DbtRunAirflowAsyncOper...

v/ success

orders_run
DbtRunAirflowAsyncOper...

Strategy 1 ExecutionMode .ATRFLOW ASYNC

| dbt_setup_async
‘| SetupAsyncOperator

v/ success

raw_payments_seed
DbtSeedAirflowAsyncOp...

v/ success

stg_payments_run

DbtRunAirflowAsyncOper...

Vv success

| orders_run
‘| DbtRunAirflowAsyncOper...

Al O deferred

raw_orders_seed

DbtSeedAirflowAsyncOp...

v/ success

stg_orders_run

DbtRunAirflowAsyncOper...

Vv success

1 customers_run
1 DbtRunAirflowAsyncOper...

® deferred

| . dbt_teardown_async
. TeardownAsyncOperator

raw_customers_seed
DbtSeedAirflowAsyncOp...

v/ success

stg_customers_run
DbtRunAirflowAsyncOper...

Vv success

Strategy 1 ExecutionMode .AIRFLOW ASYNC

Performance improvements

Execution mode Time to run project (minutes)

dbt run 13
Cosmos 1.9 (*) with ExecutionMode.LOCAL (Airflow with a local astro-cli 1
setup)

Cosmos 1.9 (*) with ExecutionMode.AIRFLOW_ASYNC (Airflow with a local n
astro-cli setup)

Cosmos 1.11a6 (**) with ExecutionMode.AIRFLOW_ASYNC (Airflow with a 7
local astro-cli setup)

(*) Using Cosmos 1.9 with Airflow 3.0.2, dbt Core 1.10 (installed in the same Python virtualenv as Airflow and Cosmos),
against Postgres. We are using a dbt project that has 129 models.

(**) Cosmos 1.11a6 has two main improvements regarding the AIRFLOW_ASYNC, originally released in Cosmos 1.9:
° Use of XCom instead of Remote object store to exchange compiled SQL files #1934
° Reuse Python virtualenv across tasks running in the same worker node #1939

ASTRONDMER

https://github.com/astronomer/cosmos-benchmark/pull/9?utm_source=chatgpt.com
https://github.com/astronomer/astronomer-cosmos/pull/1934
https://github.com/astronomer/astronomer-cosmos/pull/1939

Strategy 1 ExecutionMode .ATRFLOW ASYNC

Pros
e Reduced benchmark Airflow DAG run time by 36%
e Single dbt command invocation (less CPU/memory allocation)
e Non-blocking transformations in the data warehouse with Airflow deferrable operators

Cons

Currently only supports dbt models

Currently only supports BigQuery

Implementation specific per data warehouse

The dbt project cannot have models with a metadata-dependency on other models
Some users reported issues related to Airflow deferrable operators, which can be
challenging to reproduce

e Only works with dbt Core (not dbt Fusion)

https://astronomer.github.io/astronomer-cosmos/getting_started/async-execution-mode.html

Next steps

ExecutionMode .AIRFLOW ASYNC

Available since Cosmos 1.9 for BigQuery

Significant performance improvements in Cosmos 1.11 pre-releases
We need feedback!

Maybe add non-async version

We've introduced telemetry to evaluate the adoption
We'd love contributions

SRR WN -

is:issue state:open label:execution:async

https://github.com/astronomer/astronomer-cosmos/issues?q=is%3Aissue%20state%3Aopen%20label%3Aexecution%3Aasync

5. Strategy 2: Watcher

Strategy 2 ExecutionMode .WATCHER

Setup task

run dbt build
in a single
Airflow task

dbt_producer_)
DbtProducerWatcherOpe... raw_customers_seed
DbtSeedWatcherOperator

raw_payments_seed
DbtSeedWatcherOperator

~ success

raw_orders_seed
-| DbtseedWatcherOperator -
~ success

all the other
tasks are
sensors

https://github.com/astronomer/astronomer-cosmos/issues/1950

https://github.com/astronomer/astronomer-cosmos/issues/1950

Strategy 2 ExecutionMode .WATCHER

Registering callbacks

Register callbacks on dbt's EventManager , to access structured events and enable custom logging. The
current behavior of callbacks is to block subsequent steps from proceeding; this functionality is not

guaranteed in future versions.

from dbt.cli.main import dbtRunner
from dbt_common.events.base_types import EventMsg

def print_version_callback(event: EventMsg):
if event.info.name == "MainReportVersion":
print(f"We are thrilled to be running dbt{event.data.versiont")

dbt = dbtRunnexr(callbacks=[print_version_callback])
dbt.invoke(["1list"])

https://docs.getdbt.com/reference/programmatic-invocations#registering-callbacks

Strategy 2 ExecutionMode.WATCHER

Performance improvements

Execution mode Number of threads Time to run project (minutes)
dbt buildin the CLI 4
dbt run for each model individually
Cosmos default ExecutionMode.LOCAL in Astro CLI locally
Cosmos proposed ExecutionMode.WATCHER in Astro CLI locally 1
2
4
8
16
The ExecutionMode.WATCHER in Airflow with an Astro deployment (A10) 8

https://github.com/google/fhir-dbt-analytics ASTRONDMER

https://github.com/google/fhir-dbt-analytics

Strategy 2 ExecutionMode .WATCHER

Pros
e Reduced DAG run time to 1/5th of the original time
e Single dbt run
o generates unified run results.json
o support dbt pre-hook & post-hook
e Data warehouse-agnostic implementation

Cons/Current Limitations
e Airflow worker is blocked by transformations happening in the data warehouse
e Retries have the same performance as ExecutionMode.LOCAL
e Currently relies on dbt and Airflow being installed in the same Python venv (some
users report conflicts between dependencies)

e Unclear how these features should work: Cosmos callback, Airflow datasets/assets
and OpenLineage events

https://github.com/astronomer/astronomer-cosmos/issues/1950

Next steps

ExecutionMode.WATCHER

We successfully ran a PoC during August 2025

First release estimate: end of October 2025 (available in 1.11.0a6)
Work on making sensors deferrable

We need feedback!

We'd love contributions

GabrwdN -

is:issue state:open label:execution:watcher

https://github.com/astronomer/astronomer-cosmos/issues?q=is%3Aissue%20state%3Aopen%20label%3Aexecution%3Awatcher

6. Takeaways

Takeaways

To run the same dbt pipeline with multiple dbt
command is slow

To use Airflow deferrable operators allows to
not wait for the transformation in the data
warehouse, which can save 36% DAG runtime
It is not always possible to pre-compile a dbt
project

The watcher approach reduces the DAG
runtime up to 80% and it is agnostic to
data-warehouse

We need feedback and help!

target_name= 3
profile_mappin stgresUserPasswordProfileMapping
conn_id= _CONN_ID,

profile_args : SCHEMA_NAME},

execution_confy
dbt_executab

Orchestrating dbt
with Apache Airflow®
using Cosmos

dbt_project
group_id= 4
project_config=_project_config,
profile_config=_profile_config,
execution_config=_execution_config,
operator_args={

ASTRONDMER

The 2025 Apache
Airflow® Survey

Is herel

RRRRRRRRRR

Thank youl!
Questions?

Pankaj Koti Pankaj Singh Tati Al-Chueyr

#airflow-dbt Slack channel
ASTRONOMER

