
Building Airflow
Setups Resilient to
Zonal/Regional
Down Events

Khaled Hassan

Agenda
● The Resilience Problem
● Triggers of the problem
● Mitigation Strategies
● Conclusion
● QA

The Problem

The Problem: Vulnerability to Physical Failures
● Using Airflow as a solution for your business

● Physical failure (e.g. power/network outage)

● Running software behaviour during the outage in

two aspects:

- Physically - How and where are the critical

infrastructure components located.

- Software - How DAGs are prone to these

failures

Mitigation Strategies

● Retries should be enabled

● Infrastructure
○ Deployments Replication
○ Deployments Spread
○ Data Replication

● DAG Implementation
○ DAGs statelessness
○ DAGs idempotency
○ DAGs dependencies replication

● Complementary Strategies - One on its own
may not be sufficient.

Mitigation Strategy 1: Replication Of Critical
Components

● Deployments Replication
○ Critical Deployments (e.g. Workers,

Schedulers, Internal API in AF3)
○ Failovers to healthy replicas during failures

● Data Replication - Airflow DB
○ Ensure that healthy replicas can always

access needed data
○ Replicating DBs might be more challenging

than workloads

Real Life Scenario 1

● Identical server rooms (2 Failure Domains):
○ Failure Domain 1: Room A contains

■ Scheduler Replica 1
■ DB Replica 1
■ Worker Replica 2
■ AF3: Internal API Replica 2

○ Failure Domain 2: Room B contains
■ Scheduler Replica 2
■ DB Replica 2
■ Worker Replica 1
■ AF3: Internal API Replica 1

● Only Room A Loses Power

● Potential Problem: Building-wide Power
Outage ?

Mitigation Strategy 1: Replication Of Critical
Components

Potential Problem - What if both Rooms share the same infrastructure (e.g. power/network) ?

Mitigation Strategy 2: Spread of replicated
components

● Mitigation of Zonal/Regional Outages

● Enhanced Availability

● Zonal/Regional Disaster Recovery

● Cloud solution example:
○ Components are workloads in

Kubernetes

○ Defining
topologySpreadConstraints in
kubernetes

Real Life Scenario 2
● Room A is now in Building A and

Room B is in Building B
● Each building now is a failure

domain

● Whole Building A loses Power

● Continuity of processes hence
continuity of business

● Stateless DAGs

● Idempotent Operations

● Replicated Dependencies

Mitigation Strategy 2:
DAG Implementation

DAG Strategy 1: Stateless DAGs

● Why is Statefulness a Problem?
○ Lost Progress
○ Inconsistent State on retries
○ Failover Issues

● Stateful Definition
● Stateless Definition

DAG Strategy 2: Idempotent Operations
● What is Idempotency?
● Why Idempotency is Crucial for Reliability?

○ Preventing Duplication
○ Simplified Recovery after failures

DAG Strategy 3: Replicating DAG Dependencies
● External State & Single Points of Failure

○ DAGs often depend on external systems
(storage, databases, services).

○ Replication of dependencies is crucial.

Cloud Composer
● Managed Airflow Environment

● High Resilience Configuration
○ Minimum Number of Replicas

● Underlying Infrastructure Handled automatically.

Conclusions
- If availability is crucial for your business:

- Replication and Spread is crucial for critical components
- DAGs implementation analysis is crucial (Idempotency, Statelessness, etc)

- Resilience comes with a trade off :
- Cost
- Complexity
- Sometimes latency

- Larger scale failures are sometimes inevitable

Questions?
hkhaled@google.com

mailto:hkhaled@google.com

