
DAG Upgrade
Agent

Christian Yarros
Strategic Cloud Engineer, Google Cloud Professional Services

Google Cloud Proprietary & Confidential

Agenda

 2

Airflow Popularity

Upgrade Process

Reality

The Agent

Demo

Next Steps

01

02

03

04

05

06

Airflow Popularity

01

Proprietary + Confidential

A Double-Edged Sword
● In the last month (GitHub Pulse):

○ Excluding merges, 165 authors have pushed 635 commits to main and
970 commits to all branches.

○ On main, 2209 files have changed and there have been 54,909 additions
and 24,446 deletions

● FANTASTIC that we have such an active community contributing to the project.

● BUT: One of the biggest complaints among our customers is how often they
need to upgrade their Apache Airflow and provider packages to remain on a
supported version.

https://github.com/apache/airflow/compare/fa0e02c2f85e9edea6fc6e29d62115552b635fdd...main
https://github.com/apache/airflow/compare/fa0e02c2f85e9edea6fc6e29d62115552b635fdd...main

What does a DAG upgrade
look like?

02

Proprietary + Confidential

The Upgrade Process
1. Understand your code

2. Look at the Airflow Release Notes

3. Identify the Provider Packages you use, and check their Changelogs.

4. Mentally filter what's relevant to DAG code and what isn't.

5. Figure out what's been deprecated (imports, operators, parameters, etc.)

6. Rewrite the DAG Code

7. Ensure it parses successfully

8. Ensure business logic is maintained

9. Deploy latest version

→ Repeat for every single DAG in your inventory

Reality Check:
What are our options?

03

Proprietary + Confidential

Choose your journey

1. Manual: Tedious, redundant, takes forever.

2. Programmatic Tools: Static, brittle, complex, and need
to be maintained. Fine if you want to cover EVERY single
case.

3. Foundational LLMs: Full of Hallucinations, old data,
search tools go anywhere

4. Or…

The DAG Upgrade Agent

04

Proprietary + Confidential

The Challenge Ahead
Apache Airflow is notoriously difficult for foundational LLMs…

- Hundreds of similar sounding Operators, Sensors, Hooks, and Parameters
across dozens of Providers

- Subtle changes and deprecations across many versions of code

- Training cutoffs that prevent awareness of recent Airflow code

- Foundational models are trained on vast amounts of data, evaluating the
specifics of Airflow code is like finding a needle in a haystack

- Inclination to always say “Yes” - LLMs will attempt to generate code even if it
lacks confidence in the results.

Proprietary + Confidential

Goals and Guardrails
1. Every change must be transparent and identifiable.

a. We must know what the DAG Upgrade Agent did.

2. Every change must be referenced.

a. The DAG Upgrade Agent cannot introduce a code change unless
referenced by release notes.

3. Every change must be explained.

a. The DAG Upgrade Agent must provide reasoning for its changes.

4. Business Logic must not be altered

a. Variable, function, object naming conventions must be followed, and
business logic must be preserved.

The goal is to accelerate DAG upgrades by at least 50%.

Proprietary + Confidential

Techniques of the AI Toolbox
1. Prompt Engineering: Crafting the perfect question to get the best answer

from an AI.

2. Context Engineering: Managing all the information an AI sees to keep it
focused and accurate.

3. Retrieval Augmented Generation (RAG): Giving an AI an "open book" to look
up fresh, external facts before it answers.

4. Supervised Fine-Tuning: Training a general AI model on custom data to make
it a specialist for a specific task.

5. Thinking Models: AI that "shows its work" step-by-step to improve complex
reasoning.

6. Agents: AI that can take actions and use tools to autonomously complete a
goal.

Proprietary + Confidential

What we’ll use
Agents + System Instructions + Tools / Context Engineering + RAG
Knowledge base.

1. Google ADK Agents are superior to classical LLMs because
they can understand context, intent, and nuance. Thereby
remaining more flexible than programmatic tools. We can divide
responsibilities across multiple agents as well.

2. System Instructions: a form of "meta-prompting." telling the
model how to answer all questions.

3. Vertex AI RAG Engine confines responses to a specific corpus
of knowledge. This knowledge is curated to include latest
information, reduce noise, and therefore reduce hallucinations.

4. Context Engineering through tooling immediately aligns the
user’s request with referential information. This context derives
from the RAG knowledgebase, allowing the Agent to quickly
retrieve relevant information.

Proprietary + Confidential

A Peek into Knowledge Setup

package: "airflow-core"
version: "2.4.0"
release_date: "2022-09-19"
rules:
- component: "DAG"
 summary: "schedule_interval parameter
deprecated in favor of schedule"
 change_pattern: |
 BEFORE: DAG(dag_id="my_example",
start_date=datetime(2021, 1, 1),
schedule_interval="@daily")
 AFTER: DAG(dag_id="my_example",
start_date=datetime(2021, 1, 1),
schedule="@daily") # schedule replaces
schedule_interval
 notes: "schedule_interval is deprecated.
schedule accepts cron expressions, timedelta
objects, timetable objects, or list of dataset
objects."

Source Release Notes RAG Imported, Enriched Data

package: "airflow-core"
version: "2.4.0"
release_date: "2022-09-19"
parameters:
 - component: "DAG"
 old: "schedule_interval"
 new: "schedule"
 note: "accepts cron, timedelta,
timetable"

Shorthand Agent Context

Proprietary + Confidential

But wait!
Release notes are not enough.

What about all the Airflow and Provider Package information not
included in the release notes?

We’ll need a RAG corpus containing the full documentation to ensure
that new code contains the correct usage.

But not just one RAG corpus…

Proprietary + Confidential

Dynamic RAG Usage!

AgentUser

... Google 16.0.0 Google 18.0.0Google 17.0.0
A RAG corpus of
documentation for
each package
version

“What are the required parameters for
BigQueryInsertJobOperator in Google
Provider Package 16.0.0?”

Doc Tool

Demo

05

Proprietary + Confidential

http://screencast/cast/NTQ5MDMyNDU4MjQzMjc2OHwzNzc2OTI0ZS1iMg

Please retrieve the following dag file: deprecated_google_dag.py

The file exists in:
- Composer Environment: composer-summit-demo-2-7-3
- Project: af-summit-test-7
- Location: us-east4.

Then perform an upgrade on this dag file. The desired target versions
are:

- Airflow: 2.10.5
- Google: 18.0.0

Prompt

http://screencast/cast/NTQ5MDMyNDU4MjQzMjc2OHwzNzc2OTI0ZS1iMg

Results

06

Proprietary + Confidential

Estimated Time Savings
Activity Manual Specialized DAG Upgrader Agent Time Savings %

1 Understand your code ~30 min ~10 seconds (Agent) ~99%

2 Look at Airflow Release Notes ~30 min ~10 seconds (RAG) >99%

3 Check Provider Changelogs ~30 min ~10 seconds (RAG) >99%

4 Filter relevant changes ~20 min ~10 second (Context) >99%

5 Find deprecated code ~10 min ~10 seconds (Context) >99%

6 Rewrite the DAG ~30 min ~30 seconds (Agent) >99%

7 Ensure it parses successfully ~30 min ~10 seconds (Agent) >99%

8 Ensure business logic is maintained ~60 min ~60 min 0%

9 Deploy latest version ~10 min ~10 seconds (Agent) >99%

TOTAL ESTIMATED TIME ~4 hours ~60 minutes 75%

And 99% of the accelerated time frame is focused on business logic!

Next Steps

07

Proprietary + Confidential

Always room for improvement
- Continuously enhancing RAG data quality, scale, and

freshness

- Add support for more providers, frameworks for custom
operator, or business logic integration

- Agent tools for edge use cases

- More Feedback loops

- Evaluation datasets

- Integration into a larger suite of Airflow DAG Development
agents. DAG Generations, Conversions, Optimizations.

Thank you!
Questions?

Christian Yarros
linkedin.com/in/cyarros

http://linkedin.com/in/cyarros

