
DAGLint
Elevating Airflow DAG
Quality Through
Automated Linting

Snir Israeli
Data Engineer @Next

Agenda

04 Achievements

05 Q&A

02 Our solution - DAGLint!

03 Integrations

01 Challenges with maintaining DAGs
quality at scale

DAGs at Scale Can be Messy

Photo by Nathan Cima on Unsplash

Inconsistency
Teams grow, styles diverge, no

standards => inconsistent DAGs

Hidden anti-patterns
Scheduler slowness, avoidable

costs

Delayed Processes
Slow Code Reviews, onboarding

drags

Maintenance Hell
Debugging hurts, steep learning

curve

https://unsplash.com/@nathan_cima?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-pile-of-wires-and-wires-in-a-pile-xzWlB1dqICk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

InconsistencyTraditional Syntax TaskFlow API

Traditional Syntax,
logic imported

DAG missing Documentation & Tags

Top-level “expansive” code

What we tried before
…and why it didn’t work

Training Sessions

The Problem

Knowledge fades over time. People
forget best practices weeks after
training.

�� 🏫

Documentation
��

Monitor Performance
��

The Problem

Becomes stale quickly. Doesn't evolve
with changing best practices.

The Problem

Reactive approach. Issues are caught
only after they've already impacted
production.

Code Reviews

The Problem

Relies on reviewers remembering to
check for anti-patterns. Inconsistent
enforcement.

��

Enter, DAGLint

Runs locally on terminal

Linter for Airflow DAGs

Fast and deterministic

Identify and prevent anti-patterns

Clear & useful output

Architecture (High Level)

CLI

DAGLint Engine

Rules

Visualization

Validation Logic (using AST)

CLI & Local Dev Workflow

Lint single DAG

daglint /path/to/dags/ my_dag_name

Lint all active DAGs

daglint /path/to/dags/ --all

Run specific rules

daglint /path/to/dags/ my_dag --rules_to_run R01,R16

Architecture (High Level)

CLI

DAGLint Engine

Rules

Visualization

Validation Logic (using AST)

The Engine

Walk DAGs directory & identify DAG files

Lint DAG file/s

Respect comment‑based exclusions

Scoring Mechanism

Architecture (High Level)

CLI

DAGLint Engine

Rules

Visualization

Validation Logic (using AST)

Rules Framework

File Organization Rules

DAG Structuring Rules

Code Quality Rules

Naming Conventions

File Organizations

Valid DAG ID formats

Rules Framework

File Organization Rules

DAG Structuring Rules

Code Quality Rules

Context managers

No function definitions

No business logic

Rules Framework

File Organization Rules

DAG Structuring Rules

Code Quality Rules

No top-level expansive calls

README.md

How’s a rule defined?

New rules are automatically

discovered via inheritance

Creating rules is simple; Just

Inherit from LintRule and

implement the validate method

Localized opt‑outs

Force documentation of intent

Exclusions (Granular & Documented)

Architecture (High Level)

CLI

DAGLint Engine

Rules

Visualization

Validation Logic (using AST)

Python AST 🐍

x = 5 + 3

Your Python Code

How Python “Sees” It (AST)

What is an AST?

➔ Tree Structure: Python breaks your code into a tree

of nodes, where each node represents a construct in

your code (like operations, variables, functions)

➔ Abstract: It ignores unnecessary details like

whitespace and focuses on the structure and

meaning

➔ No execution: Code is parsed and inspected without

being executed, fast and safe.

➔ Used For: Code analysis, linters, formatters,

transpilers, and understanding code structure

programmatically

Assign

target: x value: BinOp

left: 5 op: + right: 3

AST Node Visitors

What is a Node Visitor?

A Node Visitor is a pattern that lets

you "walk" through every node in the

AST tree and perform actions when

you encounter specific node types.

How it works?

You create a class that inherits

from ast.NodeVisitor and define

visit_* methods for each node type

you care about.

Simple Example

Airflow Example

Architecture (High Level)

CLI

DAGLint Engine

Visualization

Rules

Visualization

AST visitors

Linting Results Clear DAG
Score

Easily find
violations

01
GitHub
Actions

GitHub Actions
runs DAGLint on
every PR where a

DAG file was
modified

02

Merge Blocks

Critical rule failures
block merges with

detailed output

03
Uninterrupted
Code Reviews

04
Clean Main

Branch

Keeps main branch
green & consistent

Reviewer can focus
on what’s
important

CI/CD

Daily Jenkins pipeline runs org‑wide scoring

Persist results to PostgreSQL

Tableau Dashboard

Monitoring & Analytics

Creative Use Case 💡
Gradual Migration without Regression

● Replace old custom operator usage with new version,

gradually

● While transitioning safely, we didn’t want new DAGs

or updates to existing DAGs cause degradation

● Created a rule that disallow the usage of the old

operator

● Any code change to a DAG using the old operator

will fail linting

What did we achieve?

Achievements

Developer Productivity

Improved Code Reviews

Ops & Compliance

Improved Engineer Onboardings

Quality enforced at scale

Takeaways

Airflow needs domain-aware linting

Automatic enforcement + Monitoring = Quality & Compliance at scale!

If you try it, focus on the developer experience!

Violating best-practices and inconsistencies = Quality Issues

Medium Article

Thank you.

Questions?

➔ LinkedIn: www.linkedin.com/in/snir-israeli

