AIRFLOW.
SUMMIT

DAGLint
Elevating Airflow DAG
Quality Through

Automated Linting

Snir Israeli
Data Engineer @Next

Agenda

Challenges with maintaining DAGs
quality at scale

Our solution - DAGLint!

Integrations

Achievements

Q&A

DAGs at Scale Can be Messy

Inconsistency
Teams grow, styles diverge, no

standards => inconsistent DAGs

Maintenance Hell
Debugging hurts, steep learning

curve

Photo by Nathan Cima on Unsplash

Hidden anti-patterns
Scheduler slowness, avoidable

costs

Delayed Processes
Slow Code Reviews, onboarding

drags

https://unsplash.com/@nathan_cima?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-pile-of-wires-and-wires-in-a-pile-xzWlB1dqICk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Traditional Syntax Inconsistency TaskFlow API

from airflow import DAG from airflow.decorators import dag, task
from airflow.operators.python import PythonOperator from datetime import datetime
from datetime import datetime
@dag(

def say_hello(): dag_id="hello_world_taskflow",

print("Hello World") start_date=datetime(2025, 1, 1),
schedule_interval=None,
catchup=False,

with DAG(
dag_id="hello_world_traditional",
start_date=datetime(2025, 1, 1),
schedule_interval=None,
catchup=False,

) as dag:
hello = PythonOperator(say_hello()

hello_dag():

@task

def say_hello():
print("Hello World")

task_id="hello_task",
python_callable=say_hello, hello_dag()

from airflow import DAG

from airflow.operators.python import PythonOperator
from datetime import datetime

from hello_functions import say_hello

with DAG(
dag_id="hello_world_external",
start_date=datetime (2025, 1, 1),
schedule_interval=None,

Tradltlonal Syntax' catchup=False,

) as dag:
loglc lmported hello = PythonOperator(
task_id="hello_task",
python_callable=say_hello,

DAG missing Documentation & Tags

with DAG(

dag_id="dag_with_no_documentation_nor_tags",
start_date=datetime(2025,1,1),
schedule_interval="@daily",

catchup=False,

Top-level “expansive” code

ITI-PATTERN: running e
import psycopg2
conn = psycopg2.connect("dbname=prod user=airflow")
cur = conn.cursor()
cur.execute("SELECT 1")

from airflow import DAG
from airflow.operators.empty import EmptyOperator
from datetime import datetime

with DAG(
"bad_top_level_side_effects",
start_date=datetime(2025,1,1),
schedule_interval=None,
catchup=False
as dag:

EmptyOperator(task_id="dummy")

N

What we tried before

..and why it didn't work

[m} @ =]
SH:=
Training Sessions

The Problem

Knowledge fades over time. People
forget best practices weeks after
training.

Documentation

The Problem

Becomes stale quickly. Doesn't evolve
with changing best practices.

Code Reviews

The Problem

Relies on reviewers remembering to
check for anti-patterns. Inconsistent
enforcement.

Monitor Performance

The Problem

Reactive approach. Issues are caught
only after they've already impacted
production.

Enter, DAGLInt

D Linter for Airflow DAGs

® Runs locally on terminal

"’
h T q\.

M Fast and deterministic : i 47 ~ "ﬁk\“’*

P Identify and prevent anti-patterns

N DA(GN
2 /T | M\Q

W Clear & useful output

Architecture (High Level)

CLI

CLI & Local Dev Workflow

Lint single DAG & R

User

daglint /path/to/dags/ my_dag _name
“ = : :

> . :
Lint all active DAGs \ DAGLint —>‘

daglint /path/to/dags/ --all : \l/

Run specific rules

daglint /path/to/dags/ my_dag --rules_to_run RO1,R16
3 { Score '

Architecture (High Level)

CLI

DAGLint Engine

The Engine

Walk DAGs directory & identify DAG files
Lint DAG file/s

Respect comment-based exclusions

Q 6 & o

Scoring Mechanism

Architecture (High Level)

CLI

DAGLint Engine

Rules Framework

¢ File Organization Rules Naming Conventions

File Organizations

Valid DAG ID formats

Rules Framework

‘ Context managers

. DAG Structuring Rules No function definitions

No business logic

Rules Framework

No top-level expansive calls

README.md

How's a rule defined?

class CustomRule(LintRule):

def __init__ (self, *xkwargs): {n Creating rules is simple; Just
super().__init_ (
name="custom_rule_name",
description="Rule Description", implement the validate method
id="R99",
**kwargs

Inherit from LintRule and

q New rules are automatically

discovered via inheritance

def validate(self):

Exclusions (Granular & Documented)

® Localized opt-outs

@ Force documentation of intent

some_task = PythonOperator(task_id="task_id_that_violates_a_rule”, ..)

Architecture (High Level)

CLI

-~

_

Visualization

\

/

Python AST =

Your Python Code
What is an AST?

-> Tree Structure: Python breaks your code into a tree

of nodes, where each node represents a construct in
your code (like operations, variables, functions)
- Abstract: It ignores unnecessary details like
How Python “Sees” It (AST)

whitespace and focuses on the structure and

meaning Assign

-> No execution: Code is parsed and inspected without /\

being executed, fast and safe.)
o target: x value: BinOp
- Used For: Code analysis, linters, formatters,

transpilers, and understanding code structure %\

programmatically left: 5 op: + right: 3

AST Node Visitors

What is a Node Visitor? Simple Example

A Node Visitor is a pattern that lets

you "walk" through every node in the

import ast

AST tree and perform actions when

class FunctionCounter(ast.NodeVisitor):
def __init_ (self):
self.count = 0

you encounter specific node types.

def visit_FunctionDef(self, node):
self.count += 1

How it works? self.generic_visit(node)

You create a class that inherits
from ast.Nodevisitor and define ;
counter = FunctionCounter()
visit_* methods for each node type counter.visit(ast.parse(code))

you care about.

Airflow Example

| a
ML

t dag_e -PY import ast
from airflow import DAG
from datetime impor‘t datetime class DAGF)O(?Valiclator(ast.NodeVisitor‘):
def visit_Call(self, node):
Check if this is a call to DAG(..
with DAG(if isinstance(node.func, ast.Name) and node.func.id = "DAG":
dag_id="my_dag", Collect keyword argument names
start_date=datetime(2025, 1, kwarg_names = {kw.arg for kw in node.keywords if kw.arg is not None}
schedule_interval="@daily",

) as dag:

if "doc_md" not in kwarg_names:

print(" DAG definition is missing 'doc_md' attribute")
else:

print("®# DAG definition includes 'doc_md'")

nEEep avers g CN1L 100€ES

self.generic_visit(node)

with open("dag_example.py", "r") as f:
tree = ast.parse(f.read())

J
validator = DAGDocValidator()
validator.visit(tree)

Architecture (High Level)

CLI

DAGLint Engine

Rules

Visualization

AST visitors

Clear DAG

Linting Results

Linting Results for

Rule Name

Description

Status

Line Numbers

dag_has_no_top_level_expensive_calls

The DAG must not have top-level calls to expensive
classes/services, such as AWS services directly or via
bi_toolbox utility classes. i.e. SecretsManager, S3,
Athena, Redshift, etc.

Passed

N/A

dag_is_defined_only_as_context_manager

The DAG object should be instantiated using a context
manager

Passed

dag_has_dag_description_configured

dag_id_does_not_match_dag_file_name

DAGs should have a description as a README.md file,

located right next to the DAG's file, configured as a
doc_md keyword argument.

dag_filename_must_be_all_lowercase_characters

The DAG file name should match its dag_id.

The DAG file name must be all lowercase characters

dag_has_logger_defined

The DAG should have a logger defined in the file and are
configured with all relevant parameters

dag_file_enclosed_within_its_own_folder

Every DAG should be placed in its own folder, its file
name is part of its folder name and the folder is under
the dags folder hierarchy.

dag_uses_only_

The DAG should always use and not directly the

DataQualityHandler class

Passed

dag_has_a_valid_team_tag

dag_qg_config_path_is_valid

The DAG should use

The DAG object must have a tag for the team owning the
DAG in the form of a team constant. i.e

and have its
corresponding config file in the config folder with the
suffix '_dq_tests.json'.

Passed

Passed

Easily find
violations

Failed \ 26, 40, 54, 104, 131

CI/CD

o1 o2 o3 04
GitHub Merge Blocks Uninterrupted Clean Main
Actions Code Reviews Branch

GitHub Actions Critical rule failures Reviewer can focus Keeps main branch
runs DAGLint on block merges with on what's green & consistent
every PR where a detailed output important

DAG file was

modified

< DAGLint

@ Bi 15644/di new partnership lead form experience #13619

(M Summary

Linting modified DAG files using DAGLint

succeeded on Aug 25 in 31s

Jobs

@ Linting modified DAG files using D...

Run details >

& Usage 5

&9 Workflow file
>
>
>
>
>
>
>
>

O 00O 0 0 0 00

> @ Setupjob

Check out repository code

Run actions/setup-python@v5

@ Get Changed Files

2 Find Python files with DAG instantiation
W Install DAGLint dependencies

& Run DAGLint on modified DAG files

Z. Comment PR

@ Fail if critical rules have failed

Post Run actions/setup-python@v5

Post @ Check out repository code

Complete job

@ github-actions ' bot commented on Aug 25 - edited by snir-israeli ~

DAGLint Results:
DAG File Name Number of Violations Score
example_dag_1 0 100.00% =5
®@

@ & snir-israeli merged commit 6dddc@6 into master

7 checks passed

2 check_user_group

v Linting modified DAG files using DAGLir
o lint
v pytest

Monitoring & Analytics

Daily Jenkins pipeline runs org-wide scoring

Ry

TeamTag =

Persist results to PostgreSQL

=S

Current Average Score by Team

N, 5%
N, 90.19%
I 7 4%
I 63.5%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
] Tableau Dashboard hegeScors
DAGLint
Team (tag)
[(am ~] Apache 89.1%
Filter on the relevant team/s you are =
-) /sy Group Current
interested in. ote
Unknown" are DAGS that we couldn't Identify their team tag Average Score .
. Created At
Average Score Over Time Last1adays ~
Created At
93 w 93.3% 935 935 935 335 93 5% S3.5% 93.5% 93 93.5% 93.5% 5%
89.1% 88.9% 88.9% 89.1% 89.1% 89.1% 90.6% 89.9% 89.9% 89.9% 89.9% 89.9% 90.1%
76.2% 76.4%

73.3% 76.4%

73. 76.2% 76.4% 76.4% 76.4% 76.4%
72.9% 72.9% 72.9% 72.9%

63. 5%

63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5% 63.5%

September 24, 2.. September 25, 2.. September 26, 2.. Septem September 28, 2.. September 29, 2.. September 30, 2.. October 1,2024 October 2, 2024 tober 3,2024 October 4, 2024 October 5, 2024 4 October 7, 2024

Creative Use Case

Gradual Migration without Regression

e Replace old custom operator usage with new version,

gradually
e While transitioning safely, we didn’t want new DAGs

or updates to existing DAGs cause degradation

e Created a rule that disallow the usage of the old
operator
e Any code change to a DAG using the old operator

will fail linting

What did we achieve?

Starting Score Current Score Improvement
>
66% 98% +32pp

v Developer Productivity

v Improved Code Reviews
v Ops & Compliance

v Improved Engineer Onboardings

Takeaways

¢

Violating best-practices and inconsistencies = Quality Issues

Airflow needs domain-aware linting

Automatic enforcement + Monitoring = Quality & Compliance at scale!

If you try it, focus on the developer experience!

Medium Article

Questions?

Thank you.

