
DAGnostics:Shift-Left Airflow
Governance With Policy
Enforcement Framework
Managing 100k+ DAGs Without
Breaking Developer Velocity

Stefan Wang
Senior Software Engineer
Data Infrastructure @ LinkedIn
Airflow Summit 2025

The LinkedIn Scale Reality

Multi-Tenant Airflow Ecosystem

100K+
Active DAGs

Platform-wide execution

2,000+
DAG Repositories

Team-owned deployments

3,000+
DagBags

Isolated execution contexts

300K+
Daily Task Executions

Critical daily volume

These complex workflows handle functional data pipelines, critical revenue generation, and compliance mandates.

Past - The Monolithic Airflow DAG Repository

airflow/

├── dags/ # 2000+ teams

│ ├── marketing/

│ │ ├── weekly_email_campaign.py

│ ├── sales/

│ │ ├── monthly_sales_analysis.py

│ └── …

├── plugins/

│ ├── shared_operators/

│ └── …

├── requirements.txt # shared dependency across

thousands of teams

└── utils/ # shared utils across thousands of teams

 └── ...

Central Gears
Jammed core causing

cascade failures

Team Inputs
Many small arrows feed

into the hub

Blockages
Broken teeth and stalled

motion shown

Operational Impact
Slow, fragile

deployments and
conflicts

Asks - Autonomous DAG Repository Model

Complete Lifecycle Ownership
Each of our 2,000+ teams controls their

own DAG repository lifecycle:

development, testing, and production.

Standardized Structure
Consistent structure mandates DAG

definitions, business logic,

comprehensive tests, and isolated

dependencies.

Autonomous Deployment
Teams deploy independently for velocity.

Sophisticated governance ensures

stability.

Vision - Enterprise DAG CI/CD Pipeline
• Automated validation ensures rigorous policy compliance.

• Confidence built through staged verification.

• Maintains high deployment velocity.

Runtime
Monitor

DeploymentGitHub
Actions CI

Local Dev

Future - Decentralized Dag Management

Why Governance Matters in Multi-Tenant Airflow

Chaos (No Governance)
• Failures only discovered in production

• Unclear ownership during critical incidents

• Frequent resource conflicts destabilize infrastructure
• Inconsistent practices across teams
• Compliance risks go undetected

Stability (With Governance)
• Errors caught pre-deployment in CI/CD

• Clear ownership tracking and accountability

• Coordinated resource usage prevents conflicts

• Standardized monitoring and alerting

• Proactive compliance enforcement

When 2,000+ independent teams deploy on shared Airflow infrastructure, governance transforms chaos into stability.

Manual review cannot scale to hundreds of daily deployments—automated enforcement is essential.

[Current Runtime-only] Airflow Cluster Policy

Airflow's Native Policy System
Apache Airflow provides a cluster policy system to

enforce custom rules. These policies are defined in

airflow_local_settings and execute during DAG

loading.Policies can validate or mutate DAGs, tasks, task

instances, and Kubernetes pods. They can reject

deployments by raising exceptions.

Two Critical Challenges
Late Discovery: Native policies execute within Airflow

Platform Runtime. Violations are discovered after

deployment in production.

No Preflight Validation: Developers cannot validate

policies before committing code, leading to failed

deployments and rollbacks.

So here's what we built...

Dag Import Errors - Looks Familiar?

Screenshot taken from https://github.com/apache/airflow/issues/29897

https://github.com/apache/airflow/issues/29897

Past

Current State Challenges in Native Airflow Policies
Native Airflow policies pose significant challenges, primarily due to late-stage enforcement and rigid technical requirements.

Late Validation & Feedback
Policies run only in production, causing feedback delays

(hours/days) and increased incident risk.

Complex Environment Coupling
Requires a full Airflow infrastructure for validation, making

pre-deployment checks complex and resource-intensive.

Developer Experience Gaps
No easy local or CI/CD validation without mirroring a full

Airflow environment, hindering early error detection.

Limited Extensibility & Observability
Lacks built-in exemption systems, emergency overrides,

and composable validation; failures are hard to diagnose

and audit.

A full production Airflow deployment is needed for DAG validation, preventing "shift-left" policy enforcement into development and

CI/CD.

Future - No more Dag Import Errors in Production

Technical Solution: Portable DAG Validation
Framework
This lightweight framework shifts Airflow DAG policy enforcement left, enabling earlier, more flexible, and

developer-friendly validation.

Decoupled Environment
Interface
Validate DAGs anywhere via

module injection, eliminating full

Airflow environment

requirements.

Dynamic Dependency
Resolution
Validate custom modules and

proprietary libraries via runtime

sys.path injection, no

installation needed.

Leveraged Native Error
Detection
Utilize DagBag's import_errors

for comprehensive,

production-grade detection of

all DAG errors.

Resulting in fast, independent, and comprehensive validation with immediate developer feedback.

The Policy Enforcement Engine

Enforcement Workflow

class PolicyEnforcer:

def enforce_policies(dag_repo_path, environment):

1. Setup Environment

self.setup_environment(...)

2. Load DAGs (Airflow native)

dagbag = DagBag(dag_repo_path)

3. Apply Policies

for dag in dagbag.dags.values()

self.apply_dag_policies(dag)

This core loop ensures every DAG is tested against required operational standards before deployment.

Policy Definition: Declarative Rules

@hookimpldef

dag_policy(dag):

Check ID format

validate_dag_id_format(dag)

Enforce alerting

ensure_alerting_configured(dag)

Verify ownership

validate_owner_metadata(dag)

Enforce compliance

enforce_compliance_rules(dag)

Policies are standard Python functions that access the full DAG object. They can validate, mutate, or reject

deployment based on any configuration criteria.

Composable Design: New rules can be added without modifying the core enforcement engine.

Error Type Catch as Dag Import Error Code Location

Missing dependency ✅ Yes _load_modules_from_file()

Syntax error ✅ Yes _load_modules_from_file()

Top-level exceptions ✅ Yes _load_modules_from_file()

Cycle detection ✅ Yes _process_modules() catch

DAG validation errors ✅ Yes _process_modules() catch

AirflowClusterPolicyViolation ✅ Yes _process_modules() catch

DAG ID collision ✅ Yes _process_modules() catch

Unknown executor ✅ Yes _process_modules() catch

The Shift-Left Insight

Runtime Discovery is Costly
Traditional governance enforces policies only in production. This is the worst time to

find errors:

• Immediate failure and customer impact.

• Rollback is risky.

• Debugging is slow and complex.

The Shift-Left Advantage
Shift-Left Governance moves validation earlier in the lifecycle Local & CI/CD. Catch

issues when fixes are easiest and cheapest.

100%
Runtime Cost

Maximum impact and risk

10%
CI/CD Cost

Caught before deployment

1%
Local Development Cost

Identified during coding

Use Case #1: Missing Dag Parsing Dependency Errors

The Problem: Environment Drift
DAGs that work locally often fail upon deployment due to critical differences in the

production environment:

• Missing team-specific shared libraries

• Python version mismatches

• Conflicting package versions

• Missing system dependencies

Import failures cause DAGs to disappear from the Airflow UI, leading to broken

workflows and late-stage incidents.

The DAGnostics Solution

CI Environment Simulation

Replicates production Python and system dependencies within the CI pipeline.

Auto-Load Dependencies

Loads team-specific shared libraries using repository metadata.

Validate Imports

Executes actual DAG imports using Airflow's native DagBag loader to guarantee success.

Actionable Reporting

Surfaces import errors and full stack traces directly in the pull request.

0
Production Import Failures

Since implementing CI environment simulation

100%
Pre-Deployment Detection

All import issues caught during pull request validation

Use Case #2: Ensuring DAG ID Uniqueness Identity & Ownership

Challenges with 100,000+ DAGs
At massive scale 2,000+ repositories), maintaining unique identity and tracking ownership

is critical. Manual coordination fails:

• ID collisions cause deployment failures.

• Incident response lacks immediate owner identification.

• Access control systems need verifiable ownership data.

• Compliance audits require clear accountability trails.

Our Automated Enforcement

1 Standardized DAG ID Format

Enforced format: {dag_name}-{repo_name} (using globally unique repo name).

2 Automatic Metadata Sync

Ownership synced instantly from the central repository system.

3 Access Control Integration

Ownership feeds directly into permission systems for automated authorization.

4 Clear Audit Trail

Lineage tracked from DAG to repository to owning team for compliance.

100%
DAG Ownership Visibility

Every single DAG traceable to owning team

0
ID Collisions

Automatic format enforcement prevents conflicts

Use Case #3: Alerting Policy Enforcement

The Risk: Silent Failures
Critical data pipelines that fail without alerting represent one of the highest-impact operational risks.

When revenue-generating workflows break silently:

• Business metrics drift without warning

• Compliance deadlines are missed

• Customer-facing features degrade

• Problems compound before detection

Manual alerting configuration is prone to human error. Teams forget to add alerts, misconfigure

integrations, or use inconsistent escalation paths.

Our Policy Enforcement
DAGnostics enables making alerting a structural requirement, not an optional best practice:

• All production DAGs must define failure alerting

• Standardized timeout policies prevent infinite hangs

• Integration with centralized monitoring platforms

• Automatic escalation paths based on DAG criticality

• SLA monitoring for time-sensitive workflows

1

Define Requirements

Policy specifies which DAGs require alerting based on tags or metadata

2

Validate Configuration

CI checks verify callback functions or notification integrations exist

3

Block Deployment

Pull requests can't merge without proper alerting setup

4

Runtime Verification

Production policies confirm alerts are still configured and functional

"Since enforcing alerting policies, we've eliminated an entire class of incidents where critical workflows failed unnoticed for hours or days."

Questions?

Ask us About Building Airflow at Scale
Our journey scaled Airflow to 100,000 DAGs. Shift-left governance enabled

high developer velocity at enterprise scale.

Let's Connect:

LinkedIn

linkedin.com/in/stefanwang

