AIRFLOW
SUMMIT

DAGnNostics:Shift-Left Airflow
Governance With Policy
Enforcement Framework

Managing 100k+ DAGs Without
Breaking Developer Velocity

Stefan Wang

Senior Software Engineer
Data Infrastructure @ LinkedIn
Airflow Summit 2025

in
A0

Development

Marketing-Team Dag Repo

Ads-Team Dag Repo

DagBagl

DagBag2

Feed-Team Dag Repo

DagBagl

2000+ DagBags |
-
glojo] €5

~ Active DAGs

Platform-wide execution

Deployment Platform

Deployment

3,000+

MultiTenant Airflow Platform Dag Bags

Isolated execution contexts

2,000+

DAG Repositories

Team-owned deployments

300K+

Daily Task Executions

Critical daily volume

These complex workflows handle functional data pipelines, critical revenue generation, and compliance mandates.

airflow/

Team Inputs Operational Impact
dags/ # 2000+ teams Many small arrows feed Slow, fragile
. into the hub deployments and
l_ mar‘ketlng/ conflicts

|

| — weekly_email_campaign.py
| |— sales/

| — monthly_sales_analysis.py

|— plugins/

| — shared_operators/

| L .. Central Gears Blockages
Jammed core causing Broken teeth and stalled
'— requirements.txt # shared dependency across cascade failures motion shown

thousands of teams

L utils/ # shared utils across thousands of teams
L

of
Op

Complete Lifecycle Ownership
Each of our 2,000+ teams controls their
own DAG repository lifecycle:

development, testing, and production.

AN

Standardized Structure
Consistent structure mandates DAG
definitions, business logic,
comprehensive tests, and isolated

dependencies.

~

Autonomous Deployment
Teams deploy independently for velocity.

Sophisticated governance ensures

stability.

Vision - Enterprise DAG CI/CD Pipeline

o Automated validation ensures rigorous policy compliance.
o Confidence built through staged verification.

o Maintains high deployment velocity.

Local Dev Sl Deployment Runtime

Actions ClI Monitor

11. Ownership Sync
12. ldentity Mgmt
13. Deployment Registration

Ecosystem Integration
v

P

DagRepo b

DagRepo & User Dag Testing
o B /dags)
perator — Config-driven fconfigs Code (Unit Test,

Template creation /&ependencies Changes Sandbox)

—

A|rﬂ.0W Merge / PR /
Platform Publish Code
Review

Chaos Stability

e Failures only discovered in production e Errors caught pre-deployment in ClI/CD

» Unclear ownership during critical incidents » Clear ownership tracking and accountability

e Frequent resource conflicts destabilize infrastructure o Coordinated resource usage prevents conflicts
» Inconsistent practices across teams « Standardized monitoring and alerting

« Compliance risks go undetected « Proactive compliance enforcement

When 2,000+ independent teams deploy on shared Airflow infrastructure, governance transforms chaos into stability.

Manual review cannot scale to hundreds of daily deployments—automated enforcement is essential.

Apache Airflow provides a cluster policy system to
enforce custom rules. These policies are defined in
airflow_local_settings and execute during DAG
Ralitirep. can validate or mutate DAGs, tasks, task
instances, and Kubernetes pods. They can reject

deployments by raising exceptions.

Late Discovery: Native policies execute within Airflow
Platform Runtime. Violations are discovered after
deployment in production.

No Preflight Validation: Developers cannot validate
policies before committing code, leading to failed

deployments and rollbacks.

So here's what we built...

Airflow DAGs Datasets Security Browse Admin

@ DAG Import Errors (1)

Broken DAG: [/opt/airflow/dags/11bdbf9e44aa6006233eb71285318eb9/dags/dag idx ind.py] Trageback (most recent call last):

https://github.com/apache/airflow/issues/29897

Dag PR/
Cod Merge /
Ch:n;es ‘ o Publish
\—~""Dag Import Error

Airflow Platform

Cluster Dag
Policy Processing

Runtime

_ _/

Native Airflow policies pose significant challenges, primarily due to late-stage enforcement and rigid technical requirements.

Late Validation & Feedback Complex Environment Coupling

Policies run only in production, causing feedback delays Requires a full Airflow infrastructure for validation, making

(hours/days) and increased incident risk. pre-deployment checks complex and resource-intensive.

Developer Experience Gaps Limited Extensibility & Observability

No easy local or CI/CD validation without mirroring a full Lacks built-in exemption systems, emergency overrides,

Airflow environment, hindering early error detection. and composable validation; failures are hard to diagnose
and audit.

A full production Airflow deployment is needed for DAG validation, preventing "shift-left" policy enforcement into development and

Cl/CD.

Dag
Code
Changes

PR/
Review

2N

Airflow Platform 4

Github Actions / CI / Pre-fommit

Polic
y Time

Enforcement
Framework

r

Runtime Dag
Processing

\ =

This lightweight framework shifts Airflow DAG policy enforcement left, enabling earlier, more flexible, and

developer-friendly validation.

Decoupled Environment Dynamic Dependency Leveraged Native Error
Interface Resolution Detection

Validate DAGs anywhere via Validate custom modules and Utilize DagBag's import_errors
module injection, eliminating full proprietary libraries via runtime for comprehensive,

Airflow environment sys.path injection, no production-grade detection of
requirements. installation needed. all DAG errors.

Resulting in fast, independent, and comprehensive validation with immediate developer feedback.

class PolicyEnforcer: @hookimpldef
dag_policy(dag):
def enforce_policies(dag_repo_path, environment):
Check ID format
1. Setup Environment validate_dag_id_format(dag)
self.setup_environment(...)
Enforce alerting
2. Load DAGs (Airflow native) ensure_alerting_configured(dag)
dagbag = DagBag(dag_repo_path)
Verify ownership
3. Apply Policies validate_owner_metadata(dag)
for dag in dagbag.dags.values()
self.apply dag_policies(dag) # Enforce compliance
enforce_compliance_rules(dag)

This core loop ensures every DAG is tested against required operational standards before deployment.

Policies are standard Python functions that access the full DAG object. They can validate, mutate, or reject

deployment based on any configuration criteria.

[J Composable Design: New rules can be added without modifying the core enforcement engine.

Code Location

Error Type Catch as Dag Import Error

AirflowClusterPolicyViolation [/4 Yes

DAG ID collision Yes

Missing dependency Yes
Syntax error Yes
Top-level exceptions Yes
Cycle detection Yes
DAG validation errors Yes

Unknown executor Yes

_load_modules_from_file()
_load_modules_from_file()
_load_modules_from_file()
_process_modules() catch
_process_modules() catch
_process_modules() catch
_process_modules() catch

_process_modules() catch

Traditional governance enforces policies only in production. This is the worst time to 1 O O /0

find errors:

i) i Runtime Cost
o Immediate failure and customer impact.

« Rollback s risky. Maximum impact and risk

10%

issues when fixes are easiest and cheapest. Cl/CD Cost

o Debugging is slow and complex.

Shift-Left Governance moves validation earlier in the lifecycle (Local & CI/CD). Catch

Caught before deployment

1%

Local Development Cost

Identified during coding

DAGs that work locally often fail upon deployment due to critical differences in the

B HEET Gl T Cl Environment Simulation
D Missing team-specific shared libraries
) Replicates production Python and system dependencies within the Cl pipeline.
o Python version mismatches

D Conflicting package versions

o Missing system dependencies
e 5 Auto-Load Dependencies

Import failures cause DAGs to disappear from the Airflow Ul, leading to broken i
P PP < Loads team-specific shared libraries using repository metadata.

workflows and late-stage incidents.

Validate Imports

Executes actual DAG imports using Airflow's native DagBag loader to guarantee success.

Actionable Reporting

Surfaces import errors and full stack traces directly in the pull request.

O 100%

Production Import Failures Pre-Deployment Detection

Since implementing Cl environment simulation All import issues caught during pull request validation

At massive scale (2,000+ repositories), maintaining unique identity and tracking ownership
is critical. Manual coordination fails:

* ID collisions cause deployment failures.

. Incident response lacks immediate owner identification.

* Access control systems need verifiable ownership data.

D Compliance audits require clear accountability trails.

100%

DAG Ownership Visibility

Every single DAG traceable to owning team

Standardized DAG ID Format

Enforced format: {dag_name}-{repo_name} (using globally unique repo name).

Automatic Metadata Sync

Ownership synced instantly from the central repository system.

Access Control Integration

Ownership feeds directly into permission systems for automated authorization.

Clear Audit Trail

Lineage tracked from DAG to repository to owning team for compliance.

0

ID Collisions

Automatic format enforcement prevents conflicts

Critical data pipelines that fail without alerting represent one of the highest-impact operational risks.
When revenue-generating workflows break silently: Disite A e

o Business metrics drift without warning Policy specifies which DAGs require alerting based on tags or metadata

D Compliance deadlines are missed

. Customer-facing features degrade

D Problems compound before detection

. . I . . Validate Configuration
Manual alerting configuration is prone to human error. Teams forget to add alerts, misconfigure

integrations, or use inconsistent escalation paths. Cl checks verify callback functions or notification integrations exist

DAGnostics enables making alerting a structural requirement, not an optional best practice:

. All production DAGs must define failure alerting Block Deployment

e Standardized timeout policies prevent infinite hangs Pull requests can't merge without proper alerting setup
D Integration with centralized monitoring platforms

D Automatic escalation paths based on DAG criticality

D SLA monitoring for time-sensitive workflows
Runtime Verification

Production policies confirm alerts are still configured and functional

"Since enforcing alerting policies, we've eliminated an entire class of incidents where critical workflows failed unnoticed for hours or days."

Our journey scaled Airflow to 100,000+ DAGs. Shift-left governance enabled

high developer velocity at enterprise scale.

LinkedIn ‘

linkedin.com/in/stefanwang

