

Beyond SLA
 Deadline Alerts in Airflow 3.1

Dennis Ferruzzi Ramit Kataria

What was an SLA?
In Airflow 2, an SLA allowed users
to set a duration for a Dag or Task
and get a notification if they ran
longer.

What is a Deadline Alert?
In Airflow 3, Deadline Alerts allow
you to set time thresholds for your
Dag runs, and automatically
respond when those thresholds
are exceeded.

That sounds awfully
similar, what’s the

difference?

SLA Deadline Alerts

● sla_miss was evaluated only if the task_id

was ever in SUCCESS or SKIPPED state

● SLA was defined as a timedelta relative to

the dagrun.data_interval_end

● Callback was an attribute of the Dag, but

the SLA was an attribute of individual tasks

● Dag files were parsed each time the

callback was sent to the DagFileProcessor

● DagFileProcessor was overloaded

● Evaluated every scheduler pass

● You can define the Reference (starting

point) and Interval (timedelta)

● Callback is an attribute of the Deadline

● Deadline is calculated at Dag run creation

and stored, no need for multiple passes

● DagFileProcessor can focus on its job

● Callback was executed after the Dag run

finished

● Callback is executed within seconds of the

missed deadline

SLA Deadline Alerts

User defines a length of time. When
(if?) the Dag run finishes: if it took
longer than that amount of time,
run the callback.

SLA

User defines a length of time and a
reference point from which to start
counting. When a Dag run is
created, calculate that expiration
time.

Each scheduler pass (5 seconds by
default), if that time has passed: run
the callback, even if the Dag is still
currently running.

Deadline Alerts

More flexible and timely!

I’m Sold!
How do Deadlines Work?

How is a Deadline Alert Defined?

When to start counting How long to wait How to respond

Deadline Alert

Reference Interval Callback

What Does This Look Like?

If the DAGRUN has not finished
 [Interval] 30 minutes after
 [Reference] the DAGRUN_QUEUED_AT
Then
 [Callback] send a slack message

If the DAGRUN has still not finished
 [Interval] 60 minutes after
 [Reference] the DAGRUN_QUEUED_AT
Then
 [Callback] send an email message

How Does It Work?
Job Runner

(Every New DagRun)
Store in

DB Table
If there is a Deadline,

calculate the expiration

Scheduler
Loop

If any Deadlines are in the past
and not marked as handled

Handler

Executor

Triggerer

SYNC

ASYNC

Queue Callbacks for execution

Execute callback
and update the

Deadline’s state

Built-in Deadline References

DAGRUN_LOGICAL_DATE FIXED_DATETIMEDAGRUN_QUEUED_AT AVERAGE_RUNTIME

Measures time from
when the DagRun was

queued.

Useful for monitoring
resource constraints.

Measures time from
when the Dag run was

scheduled to start.

Useful for ensuring
scheduled Dags

complete before their
next scheduled run.

Specifies a fixed point in
time.

Useful when Dags must
complete by a specific

time.

Calculates the average
historical runtime of the

Dag.

Useful for detecting
unusual activity in a

Dag run or
environment.

Callback Support

Existing Notifiers - All Work

Custom Callbacks - Can be placed

anywhere in the Dag Bundle

Synchronous Callbacks
(Coming in 3.2)

Asynchronous Callbacks
(Available in 3.1)

Run in the Executor/worker

Existing Notifiers - Async Notifiers Work

Custom Callbacks - Must be in the

Triggerer’s sys.path (for example, the

Plugins folder)

Run in the Triggerer

Async vs Sync Callbacks

Higher runtime overhead - runs on

worker/executor

Automatically uses the callback definition

from the Dag bundle

Runs any python callable

Lower runtime overhead - runs on triggerer

Requires restarting the triggerer to apply

changes in callback

Requires async callable

Synchronous Callbacks
(Coming in 3.2)

Asynchronous Callbacks
(Available in 3.1)

Callback Support

All existing Notifiers

Custom Callbacks - Can be placed

anywhere in the Dag Bundle

Synchronous CallbacksAsynchronous Callbacks

Existing Notifiers with async support:

Slack, Email, AWS (SES, SNS, SQS) + more

coming soon

Custom Callbacks - Must be in the

Triggerer’s sys.path (for example, the

Plugins folder)

DEMO!

https://docs.google.com/file/d/1T7gi5Za1qRFzsorp1hadmOl40jU4c6HL/preview

What’s To Come?

● DAG-level Deadlines

○ Dagrun: Started

○ Dagrun: Queued

○ Fixed datetime (every day at 9AM)

○ Average runtime

● Multiple Deadlines per DAG

● Async Callbacks and Notifiers

○ Executed by the Triggerer

Available in 3.1

● Synchronous Callbacks

○ Pick your Executor!

● Task-Level Deadlines

● Expand trigger options:

○ Dataset: Created

○ Dataset: Updated

○ Asset-Driven

○ ???

● Add more Asynchronous Notifiers

Future Work

Questions?

Slide Deck

@Ferruzzi

@Ramit Kataria

Get
Involved

