AIRFLOW.
SUMMIT

Deadline
Alerts In
Airflow 31

Dennis Ferruzzi | oss software Engineer @ AWS

Ramit Kataria | oss software Engineer @ AWS

AIRFLOW
SUMMIT

Beyond SLA

Deadline Alerts in Airflow 3.1

What was an SLA?

In Airflow 2, an SLA allowed users
to set a duration for a Dag or Task
and get a notification if they ran
longer.

What is a Deadline Alert?

In Airflow 3, Deadline Alerts allow
you to set time thresholds for your
Dag runs, and automatically
respond when those thresholds
are exceeded.

That sounds awfully
similar, what's the
difference?

SLA

Deadline Alerts

sla_miss was evaluated only if the task_id
was ever in SUCCESS or SKIPPED state

SLA was defined as a timedelta relative to
the dagrun.data_interval_end

Callback was an attribute of the Dag, but
the SLA was an attribute of individual tasks

Callback was executed after the Dag run
finished

Dag files were parsed each time the
callback was sent to the DagFileProcessor

DagFileProcessor was overloaded

Evaluated every scheduler pass

You can define the Reference (starting
point) and Interval (timedelta)

Callback is an attribute of the Deadline

Callback is executed within seconds of the
missed deadline

Deadline is calculated at Dag run creation
and stored, no need for multiple passes

DagFileProcessor can focus on its job

(1)
)
| &
9
L~ ¢
Q
£
T
y]
QO
(]

SLA

Deadline Alerts

User defines a length of time. When
(if?) the Dag run finishes: if it took
longer than that amount of time,
run the callback.

User defines a length of time and a
reference point from which to start
counting. When a Dag run is
created, calculate that expiration
time.

Each scheduler pass (5 seconds by
default), if that time has passed: run
the callback, even if the Dag is still
currently running.

I’'m Sold!
How do Deadlines Work?

How is a Deadline Alert Defined?

Deadline Alert

How to respond

When to start counting How long to wait

SLACK_TEAM = AsyncCallback(
SlackWebhookNotifier,
kwargs: {"text": "#& {{ dag_run.dag_id }} is running late."}

: élgrdli?l¥ EMAIL_ONCALL = AsyncCallback(

callback_callable=SmtpNotifier,
kwargs={
"to": ONCALL_ADDRESS,
"subject": "M {{ dag_run.dag_id }} missed deadline at {{ deadline.deadline_time }}.",

What Does ThIS Look leer, ! "html_content": "Dag Run details: {{ dag_run }}",
)
If the DAGRUN has not finished with DAG(
[Interval] 30 minutes after dag_id="deadline_alerts_demo",
[Reference] the DAGRUN_QUEUED_AT deadline=[
Then DeadlineAlert(
[Callback] send a slack message reference=DeadlineReference.DAGRUN_QUEUED_AT,

interval=timedelta(minutes=30),
callback=SLACK_TEAM,

)'
If the DAGRUN has still not finished DeadlineAlert(
[Interval] 60 minutes after reference=DeadlineReference.DAGRUN_QUEUED_AT,
[Reference] the DAGRUN_QUEUED_AT interval=timedelta(minutes=60),
Then callback=EMAIL_ONCALL,
[Callback] send an email message)
1
)
task1()

How Does It Work”
Job Runner If there is a Deadline, Storein
(Every New DagRun) calculate the expiration DB Table

Scheduler If any Deadlines are in the past
Loop and not marked as handled
Queue Callbacks for execution

SYNC
Executor Execute callback
and update the
ASYNC Deadline’s state

Built-in Deadline References

DAGRUN_QUEUED_AT DAGRUN_LOGICAL_DATE FIXED_DATETIME AVERAGE_RUNTIME

Measures time from
when the DagRun was
queued.

Useful for monitoring
resource constraints.

Measures time from
when the Dag run was
scheduled to start.

Useful for ensuring
scheduled Dags
complete before their
next scheduled run.

Specifies a fixed point in
time.

Useful when Dags must
complete by a specific
time.

Calculates the average
historical runtime of the
Dag.

Useful for detecting
unusual activity ina
Dag run or
environment.

Callback Support

Asynchronous Callbacks Synchronous Callbacks
(Availablein 3.1) (Comingin 3.2)
Runinthe Triggerer Run in the Executor/worker
Existing Notifiers - Async Notifiers Work Existing Notifiers - All Work
Custom Callbacks - Must be in the Custom Callbacks - Can be placed
Triggerer’s sys.path (for example, the anywhere in the Dag Bundle
Plugins folder)

Async vs Sync Callbacks

Asynchronous Callbacks Synchronous Callbacks
(Available in 3.1) (Comingin 3.2)
Lower runtime overhead - runs on triggerer Higher runtime overhead - runs on
worker/executor
Requires restarting the triggerer to apply Automatically uses the callback definition
changes in callback from the Dag bundle
Requires async callable Runs any python callable

Callback Support

Asynchronous Callbacks

Synchronous Callbacks

Existing Notifiers with async support:

Slack, Email, AWS (SES, SNS, SQS) + more
coming soon

Custom Callbacks - Must be in the
Triggerer’s sys.path (for example, the
Plugins folder)

All existing Notifiers

Custom Callbacks - Can be placed
anywhere in the Dag Bundle

DEMO!

https://docs.google.com/file/d/1T7gi5Za1qRFzsorp1hadmOl40jU4c6HL/preview

What's To Come?

e DAG-level Deadlines e Synchronous Callbacks

o Dagrun: Started o Pick your Executor!

o Dagrun: Queued e Task-Level Deadlines

o Fixed datetime (every day at 9AM) e Expand trigger options:

o Average runtime o Dataset: Created
e Multiple Deadlines per DAG o Dataset: Updated

Async Callbacks and Notifiers o Asset-Driven
o Executed by the Triggerer o
e Add more Asynchronous Notifiers

Questions? 3
B

