AIRFLOW
SUMMIT

Enabling SQL testing

in Airflow workflows using
Pydantic types

Gurmeet Singh Saran, Anthropic
Kushal Thakkar, Anthropic

Agenda

1. The Problem

2. SQL Testing Framework
3. Culture Shift

4. Future

The Problem

The $80 Billion Question

September 2016: Facebook's Admission

Wrong video metrics reported to advertisers for two years!

® Average viewing time overstated by 80% THE WALL STREETJOURNAL

English Edition ¥ | Print Edition Video A

itest World Business US. Politics Economy Tech Markets&Finance Opinion Arts Lifestyle RealEstate Personal Fit

® Affected billions in advertising decisions BUSINESS | MO

Facebook Overestimated Key Video
Metric for Two Years

Social network miscalculated the average time users spent watching
videos on its platform

® Discovered after TWO YEARS in production

Source: WSJ

https://www.wsj.com/articles/facebook-overestimated-key-video-metric-for-two-years-1474586951

It's Not Just Facebook

Monday Morning & Wednesday Afternoon & Friday 5 PM -

"Why are yesterday's "The exec dashboard is "We just billed customers
revenue numbers different wrong. AGAIN." wrong. All hands on deck."
today?"

The Truth: Every team has their own Facebook moment brewing

The Hidden Complexity of SQL

WITH fruits AS |

SELECT 'apple' AS fruit, 3.55 AS price
UNION ALL

SELECT 'banana', 2.10
UNION ALL
SELECT &, 4.30

)

SELECT MAX_BY(fruit, price) AS fruit
FROM fruits;

What is the output of this SQL Query ?

Depends if ¢ is null or not null
apple - for clickhouse, duckdb

null - for athena, bigquery and snowflake

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html#engine-versions-reference-0003-breaking-changes

The Uncomfortable Truth

' A ’&6

We Don't Have Time \)O\\\‘

e Testing seen as overhead ((\O(\ OO’&O\(\

e Pressure to ship fast e ok© %’&O

e Technical debt accumulg(t\ign\g o Q\@(

G \O
SQL is Simple 5@ %Q\’(Od\)d&
O
. Undeé@m%tir@ @5?n%exity

o \Rbﬁt’\estirq@‘fﬂ.é%ework

e Trust without verification

SQL Testing
Framework

Design Principles

e Zero or Minimal Footprint: Tests should avoid creating any artifacts
whenever possible.

e Ease of Use & Extensibility: Writing and maintaining test cases should be
as simple as writing SQL.

e Dynamic & Adaptive Testing: Instead of relying solely on predefined test
cases, our library should have the ability to automatically surface new
issues as data evolves.

The Magic - CTE Injection

def test_simple_user_query():
sql_test(
mock_tables=[
UsersMockTable([User(1, "Alice",'alice@fb.com")]),
UsersMockTable([User(2, "Bob",'bob@fb.com")])
Il
result_class=User,
)
def test_user_query():
return TestCase(
query="SELECT * FROM users WHERE user_id = 1"
)
results = test_user_query()
assert len(results) 1
assert results[0].name == "Alice"
assert results[0].user_id 1

WITH users AS (
-- Injected mock data
SELECT * FROM (
VALUES
(1, 'Alice', 'alice@fb.com’),
(2, 'Bob', 'bob@fb.com’)
) AS t(user_id, name, email)
)
-- Your original query
SELECT * FROM users WHERE user_id = 1

Continuous Integration
Table Definition sqltesting

framework

Avro

DBT Model ———————=»| Python Classes with

i Inject Mock -> Run -> Deserialize
Create Table Operator Richer Types J 10

codegen
Deserialize
. DQOperator
Create Table Operator SQlLTable Operator —_— Dynamic DQOperator (Business Logic
(Code Gen) Invariants)

DAG Runtime

Where does it fit?

;| DQ Monitors - Is my data
healthy?

Monitor anomalies

+~ SQL Testing - Will my logic

work? Track freshness

Test business logic Alert on issues

Validate calculations AFTER it's running

Catch bugs early “_ DQ Operator/DBT Tests - Is my
model sound?
BEFORE you deploy

Test structure

DEPLOYMENT Check constraints
Verify relationships

AS you transform

Culture Shift

The Elephant in the Room

But Writing Tests Takes Too Much Time!

The Perceived Cost &

e Writing test: 30 minutes
e Maintaining test: 10 minutes/month
e Running tests: 5 minutes

“We don't have time for this!"

The Hidden Cost of NOT Testing ¢

One production bug can take up to 120 engineer
hours per incident. Plus, lost revenue, customer
trust, team burnouts.

Math below:

Detection: 2-48 hours (it's Friday night)

War room: 8 engineers x 6 hours = 48 hours
Fix & deploy: 4 hours

Data cleanup: 16 hours

Post-mortem: 8 hours

But How Do We Actually Get There?

if query in ["revenue_calc", "user_metrics", "that_evil_join"]:
Month 1

write_test() # Just these 3 queries

Phase1 e Immediate value

e Team sees immediate benefits

Start Where It Hurts e No overwhelming commitment

Test only the broken queries

But How Do We Actually Get There?

Month 2 if query.is_new():

require_test() # Going forward, not backward

Phase 2 e No technical debt increase

e Gradual coverage growth

New Code Rule e Developers learn by doing

All new queries must have test

But How Do We Actually Get There?

Month 3 - 6 if query.is_modified():

add_or_update test() # Leave it better

Phase 3 e Organic coverage increase

e Tests stay relevant

The Boy Scout Rule e Knowledge spreads naturally

when you touch it, test it

But How Do We Actually Get There?

for query in critical_business_queries:

Month 6 - 12

backfill_test() # Systematic coverage

e Risk-based prioritization

e Measurable progress

Full Coverage Sprint e Celebrate milestones

Dedicated Effort for critical path

Making It Stick

The Transformation Journey

Skepticism =2 "This is just more process"
o Action: Show, don't tell. Live demo of catching a real bug.
Curiosity & "Okay, that actually would have saved us last month"
o Action: Pair with skeptics on their first test.
Early Adoption ‘= "| wrote a test and it caught something!"
o Action: Celebrate publicly. Share success in stand-up.
Momentum +” "Can we test our ETL pipeline too?"
o Action: Expand scope. Provide advanced training.
New Normal -, "PR without tests? That's weird."
o Action: It's now just how we work.

Future

Vision

Al-powered test generation
o Claude is really good at test case generation!
e Multi-cloud testing
e Auto generate DQ checks based on richer data types
e Query engine migration testing

e Perf evaluations - not just correctness

Open Source

Project: sqltesting

A powerful Python framework for unit testing SQL
queries with mock data injection across BigQuery,
Snowflake, Athena, Trino, Redshift, and DuckDB.

Project: mocksmith

Type-safe data validation with automatic mock
generation for Python dataclasses and Pydantic
models. Build robust data models with database-aware
validation and generate realistic test data with a single
decorator.

Questions?

