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The Problem



The $80 Billion Question
September 2016: Facebook's Admission

Wrong video metrics reported to advertisers for two years!

● Average viewing time overstated by 80%

● Affected billions in advertising decisions

● Discovered after TWO YEARS in production

Source: WSJ

https://www.wsj.com/articles/facebook-overestimated-key-video-metric-for-two-years-1474586951


It's Not Just Facebook

Friday 5 PM 💀
"We just billed customers 
wrong. All hands on deck." -- 
Missing WHERE clause -- in 
the billing calculation

Wednesday Afternoon 🤬
"The exec dashboard is 
wrong. AGAIN." -- That 'quick 
fix' broke -- three 
downstream queries

Monday Morning 😰
"Why are yesterday's 
revenue numbers different 
today?" -- Someone's JOIN 
is -- creating duplicates

The Truth: Every team has their own Facebook moment brewing



The Hidden Complexity of SQL

What is the output of this SQL Query ?

Depends if 🔥is null or not null

apple - for clickhouse, duckdb

null - for athena, bigquery and snowflake

* Athena Breaking Changes Across Versions - https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html#engine-versions-reference-0003-breaking-changes

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html#engine-versions-reference-0003-breaking-changes


The Uncomfortable Truth

We Don't Have Time

● Testing seen as overhead
● Pressure to ship fast
● Technical debt accumulation

SQL is Simple

● Underestimating complexity
● No testing framework
● Trust without verificationMost Semantic SQL changes are manually tested at best, 

relying on production alerts to catch failures



SQL Testing 
Framework



Design Principles

● Zero or Minimal Footprint: Tests should avoid creating any artifacts 
whenever possible.

● Ease of Use & Extensibility: Writing and maintaining test cases should be 
as simple as writing SQL.

● Dynamic & Adaptive Testing: Instead of relying solely on predefined test 
cases, our library should have the ability to automatically surface new 
issues as data evolves.



The Magic - CTE Injection

def test_simple_user_query():
    @sql_test(
        mock_tables=[

UsersMockTable([User(1, "Alice",'alice@fb.com')]),
UsersMockTable([User(2, "Bob",'bob@fb.com')])

        ],
        result_class=User,
    )
    def test_user_query():
        return TestCase(
            query="SELECT * FROM users WHERE user_id = 1"
        )
    results = test_user_query()
    assert len(results) == 1
    assert results[0].name == "Alice"
    assert results[0].user_id == 1

WITH users AS (
    -- Injected mock data
    SELECT * FROM (
        VALUES 
        (1, 'Alice', 'alice@fb.com'),
        (2, 'Bob', 'bob@fb.com')
    ) AS t(user_id, name, email)
)
-- Your original query
SELECT * FROM users WHERE user_id = 1





Where does it fit?

🧪 SQL Testing - Will my logic 
work?

✅ Test business logic 

✅ Validate calculations 

✅ Catch bugs early

BEFORE you deploy   

📊 DQ Monitors - Is my data 
healthy?

✅ Monitor anomalies

✅ Track freshness

✅ Alert on issues

AFTER it's running

🔧 DQ Operator/DBT Tests - Is my 
model sound?

✅ Test structure

✅ Check constraints

✅ Verify relationships

AS you transform
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Culture Shift



The Elephant in the Room
But Writing Tests Takes Too Much Time!

The Perceived Cost 😰
● Writing test: 30 minutes
● Maintaining test: 10 minutes/month
● Running tests: 5 minutes

“We don't have time for this!"

The Hidden Cost of NOT Testing 💸
One production bug can take up to 120 engineer 
hours per incident. Plus, lost revenue, customer 
trust, team burnouts.

Math below:

● Detection: 2-48 hours (it's Friday night)
● War room: 8 engineers × 6 hours = 48 hours
● Fix & deploy: 4 hours
● Data cleanup: 16 hours
● Post-mortem: 8 hours



But How Do We Actually Get There?

Phase 1
Start Where It Hurts

Test only the broken queries

Month 1
if query in ["revenue_calc", "user_metrics", "that_evil_join"]:

    write_test()  # Just these 3 queries

● Immediate value 

● Team sees immediate benefits 

● No overwhelming commitment



Phase 2
New Code Rule

All new queries must have test

Month 2

But How Do We Actually Get There?

if query.is_new():

    require_test()  # Going forward, not backward

● No technical debt increase

● Gradual coverage growth

● Developers learn by doing



if query.is_modified():

    add_or_update_test()  # Leave it better

● Organic coverage increase

● Tests stay relevant

● Knowledge spreads naturally

Phase 3
The Boy Scout Rule

when you touch it, test it

Month 3 - 6

But How Do We Actually Get There?



for query in critical_business_queries:

    backfill_test()  # Systematic coverage

● Risk-based prioritization

● Measurable progress

● Celebrate milestones

Phase 4
Full Coverage Sprint

Dedicated Effort for critical path

Month 6 - 12

But How Do We Actually Get There?



The Transformation Journey

● Skepticism 😒 "This is just more process"
○ Action: Show, don't tell. Live demo of catching a real bug.

● Curiosity 🤔 "Okay, that actually would have saved us last month"
○ Action: Pair with skeptics on their first test.

● Early Adoption 😊 "I wrote a test and it caught something!"
○ Action: Celebrate publicly. Share success in stand-up.

● Momentum 🚀 "Can we test our ETL pipeline too?"
○ Action: Expand scope. Provide advanced training.

● New Normal 💪 "PR without tests? That's weird."
○ Action: It's now just how we work.

Making It Stick



Future



Vision

● AI-powered test generation

○ Claude is really good at test case generation!

● Multi-cloud testing

● Auto generate DQ checks based on richer data types

● Query engine migration testing

● Perf evaluations - not just correctness



Open Source

Project: sqltesting

A powerful Python framework for unit testing SQL 
queries with mock data injection across BigQuery, 
Snowflake, Athena, Trino, Redshift, and DuckDB.

Project: mocksmith

Type-safe data validation with automatic mock 
generation for Python dataclasses and Pydantic 
models. Build robust data models with database-aware 
validation and generate realistic test data with a single 
decorator.



Questions?


