
Enabling SQL testing
in Airflow workflows using
Pydantic types

Gurmeet Singh Saran, Anthropic
Kushal Thakkar, Anthropic

Agenda

1. The Problem
2. SQL Testing Framework
3. Culture Shift
4. Future

The Problem

The $80 Billion Question
September 2016: Facebook's Admission

Wrong video metrics reported to advertisers for two years!

● Average viewing time overstated by 80%

● Affected billions in advertising decisions

● Discovered after TWO YEARS in production

Source: WSJ

https://www.wsj.com/articles/facebook-overestimated-key-video-metric-for-two-years-1474586951

It's Not Just Facebook

Friday 5 PM 💀
"We just billed customers
wrong. All hands on deck." --
Missing WHERE clause -- in
the billing calculation

Wednesday Afternoon 🤬
"The exec dashboard is
wrong. AGAIN." -- That 'quick
fix' broke -- three
downstream queries

Monday Morning 😰
"Why are yesterday's
revenue numbers different
today?" -- Someone's JOIN
is -- creating duplicates

The Truth: Every team has their own Facebook moment brewing

The Hidden Complexity of SQL

What is the output of this SQL Query ?

Depends if 🔥is null or not null

apple - for clickhouse, duckdb

null - for athena, bigquery and snowflake

* Athena Breaking Changes Across Versions - https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html#engine-versions-reference-0003-breaking-changes

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html#engine-versions-reference-0003-breaking-changes

The Uncomfortable Truth

We Don't Have Time

● Testing seen as overhead
● Pressure to ship fast
● Technical debt accumulation

SQL is Simple

● Underestimating complexity
● No testing framework
● Trust without verificationMost Semantic SQL changes are manually tested at best,

relying on production alerts to catch failures

SQL Testing
Framework

Design Principles

● Zero or Minimal Footprint: Tests should avoid creating any artifacts
whenever possible.

● Ease of Use & Extensibility: Writing and maintaining test cases should be
as simple as writing SQL.

● Dynamic & Adaptive Testing: Instead of relying solely on predefined test
cases, our library should have the ability to automatically surface new
issues as data evolves.

The Magic - CTE Injection

def test_simple_user_query():
 @sql_test(
 mock_tables=[

UsersMockTable([User(1, "Alice",'alice@fb.com')]),
UsersMockTable([User(2, "Bob",'bob@fb.com')])

],
 result_class=User,
)
 def test_user_query():
 return TestCase(
 query="SELECT * FROM users WHERE user_id = 1"
)
 results = test_user_query()
 assert len(results) == 1
 assert results[0].name == "Alice"
 assert results[0].user_id == 1

WITH users AS (
 -- Injected mock data
 SELECT * FROM (
 VALUES
 (1, 'Alice', 'alice@fb.com'),
 (2, 'Bob', 'bob@fb.com')
) AS t(user_id, name, email)
)
-- Your original query
SELECT * FROM users WHERE user_id = 1

Where does it fit?

🧪 SQL Testing - Will my logic
work?

✅ Test business logic

✅ Validate calculations

✅ Catch bugs early

BEFORE you deploy

📊 DQ Monitors - Is my data
healthy?

✅ Monitor anomalies

✅ Track freshness

✅ Alert on issues

AFTER it's running

🔧 DQ Operator/DBT Tests - Is my
model sound?

✅ Test structure

✅ Check constraints

✅ Verify relationships

AS you transform

POST PROD

DE
VE

LO
PM

EN
T

DEPLOYMENT

Culture Shift

The Elephant in the Room
But Writing Tests Takes Too Much Time!

The Perceived Cost 😰
● Writing test: 30 minutes
● Maintaining test: 10 minutes/month
● Running tests: 5 minutes

“We don't have time for this!"

The Hidden Cost of NOT Testing 💸
One production bug can take up to 120 engineer
hours per incident. Plus, lost revenue, customer
trust, team burnouts.

Math below:

● Detection: 2-48 hours (it's Friday night)
● War room: 8 engineers × 6 hours = 48 hours
● Fix & deploy: 4 hours
● Data cleanup: 16 hours
● Post-mortem: 8 hours

But How Do We Actually Get There?

Phase 1
Start Where It Hurts

Test only the broken queries

Month 1
if query in ["revenue_calc", "user_metrics", "that_evil_join"]:

 write_test() # Just these 3 queries

● Immediate value

● Team sees immediate benefits

● No overwhelming commitment

Phase 2
New Code Rule

All new queries must have test

Month 2

But How Do We Actually Get There?

if query.is_new():

 require_test() # Going forward, not backward

● No technical debt increase

● Gradual coverage growth

● Developers learn by doing

if query.is_modified():

 add_or_update_test() # Leave it better

● Organic coverage increase

● Tests stay relevant

● Knowledge spreads naturally

Phase 3
The Boy Scout Rule

when you touch it, test it

Month 3 - 6

But How Do We Actually Get There?

for query in critical_business_queries:

 backfill_test() # Systematic coverage

● Risk-based prioritization

● Measurable progress

● Celebrate milestones

Phase 4
Full Coverage Sprint

Dedicated Effort for critical path

Month 6 - 12

But How Do We Actually Get There?

The Transformation Journey

● Skepticism 😒 "This is just more process"
○ Action: Show, don't tell. Live demo of catching a real bug.

● Curiosity 🤔 "Okay, that actually would have saved us last month"
○ Action: Pair with skeptics on their first test.

● Early Adoption 😊 "I wrote a test and it caught something!"
○ Action: Celebrate publicly. Share success in stand-up.

● Momentum 🚀 "Can we test our ETL pipeline too?"
○ Action: Expand scope. Provide advanced training.

● New Normal 💪 "PR without tests? That's weird."
○ Action: It's now just how we work.

Making It Stick

Future

Vision

● AI-powered test generation

○ Claude is really good at test case generation!

● Multi-cloud testing

● Auto generate DQ checks based on richer data types

● Query engine migration testing

● Perf evaluations - not just correctness

Open Source

Project: sqltesting

A powerful Python framework for unit testing SQL
queries with mock data injection across BigQuery,
Snowflake, Athena, Trino, Redshift, and DuckDB.

Project: mocksmith

Type-safe data validation with automatic mock
generation for Python dataclasses and Pydantic
models. Build robust data models with database-aware
validation and generate realistic test data with a single
decorator.

Questions?

