
From Repetition to
Refactor: Smarter
DAG Design in
Airflow 3
Steven Woods
Director, Software Engineering
Zelis

Agenda: From Repetition to Refactor

Initial DAG Design
• Common anti-patterns: hardcoded logic, duplication, rigid sequencing

Refactor Strategy
• Applying D.R.Y. principles
• Task factories, parameterization, dynamic task mapping

Designing for Flexibility
• Modular DAGs for batch, streaming, and ad-hoc workflows

Pros & Cons of Refactor
• Benefits: scalability, maintainability, observability
• Trade-offs: complexity, learning curve

Q&A

Initial DAG Design

🐾 Project: Animal image processor
Description:
Develop an automated and scalable workflow that retrieves animal images from the internet and processes
them for downstream use.

🎯 Objective:

• Fetch a new animal image daily from a designated internet source
• Target animals: cat, zebra, dog, lion
• Store the image in an object storage service (e.g., Amazon S3)
• Resize to standardized dimensions & convert image

Initial DAG Design
📋 Tasks

• start – Workflow entry point
• trigger_(animal)_download – Trigger Lambda/external process to fetch animal photos
• is_(animal)_download_complete – Sensor to check if download finished (file present in S3)
• process_(animal)_image – Resize and convert the image
• store_(animal)_image – Save image metadata to the database
• notify_(animal)_complete – Send completion notification email
• complete – Workflow end point

Initial DAG Design
I’ll call this design “repetitive task rows.” It has several scalability and management issues:

• More rows = more code (PRs, deployments)
• Hard to run concurrently or isolate failures
• Doesn’t scale (4 animals → 10, 20, 100+)
• Graph becomes unreadable
• Code harder to maintain
• One failing task row can break the whole DAG

Task Row

Initial DAG Design

Each new animal adds 5+ new tasks
(download, check, process, store, notify)

Code grows linearly with every animal →
high maintenance overhead

Hard to isolate and retry failures for a
single animal

Increases DAG execution time and
complexity

DAG visual quickly clutters with repetitive
task rows

Initial DAG Design
• Failure in cat or dog tasks → entire DAG run fails
• With DAG concurrency = 1:

Next DAG run blocked until current completes
Persistent failures = major processing slowdown

Refactor Strategy
Recommended solution: Split into 2 DAGs:

DAG 1: Trigger
• Runs on a schedule (e.g., @daily)
• Reads configuration from Airflow variables
• Passes parameters to the processing DAG
• Simple to enable/disable

DAG 2: Processor
• Accepts parameters (e.g., { ”animal": "zebra" })
• Has no schedule – runs only when triggered
• Can be triggered by:

DAG 1 (Trigger DAG)
Manual runs with params
External processes

• Supports ad-hoc requests and flexible processing

Variable:
[
 {”animal": "zebra"},
 {”animal": "cat"},
 {”animal": "dog"},
 {”animal": "bear"}
]

Refactor Strategy
DAG 1: Trigger

• Two execution modes:
Group processing → TriggerDagRunOperator(wait_for_completion=True)
Individual processing → TriggerDagRunOperator(wait_for_completion=False)

• Supports running multiple configurations as needed
Single
Static
Dynamically Mapped 🧱 Static

Tasks

🌊 Dynamically Mapped
Tasks

Refactor Strategy
DAG 2: Processor
• Responsible for processing configs (accepts parameters, e.g., { "animal": "zebra" })
• No schedule – runs only when triggered
• Can be started by:

DAG 1 (Trigger DAG)
Manual runs with parameters
External processes

• Supports ad-hoc requests
• Easy to extend – add new configs via Airflow variables or code (no new tasks/operators required)
• Flexible & dynamic – avoids hardcoding (e.g., per-animal rules), focuses on runtime config processing

🖼 Download
Image

✔ Ensure Download
Complete

📐 Resize &
Convert

💾 Store
Image

📩 Send
Notification

Designing for Flexibility

📦 Batch
• All animal downloads run on a fixed nightly schedule
• Processes the full set of animals in one batch (e.g., zebra, lion, cat, dog)
• Best for use cases where freshness isn’t critical and daily updates are sufficient

🔄 Streaming
• A data pipeline publishes animal IDs (e.g., {"animal": "zebra”}, {”animal": "cat"}) to Kafka/Kinesis. Each

event tells your DAG which animal photo to download.

⚡ Ad-hoc
• A simple website allows users to select an animal (e.g., 🦓, 🐶, 🐱)
• When triggered, the site calls Airflow’s API to start the download + processing DAG
• No fixed schedule — runs only when requested

The design supports a diverse range of workflows:

Pros & Cons of Refactor
✅ Pros of Updated Design

Scalable – Add or remove animals by simply updating a
variable (no new code required)

Optimized execution – Integrated use of DAG concurrency,
task concurrency, and parallelism improves workload control
and performance

Separation of responsibility – Each DAG focuses on its own
role, making the codebase cleaner and easier to manage

No code changes needed – No PRs, reviews, or
deployments for adding configs

Simplified troubleshooting – Issues with one animal don’t
block others; use Grid View to quickly spot and fix failures

Flexible execution – Run configurations manually, externally
triggered, in bulk, or one at a time

⚠ Cons of Updated Design

Split codebase – Logic is separated across two DAGs
(Trigger & Processor)

Limited validation – New “animals” are added via
variables without code review

Fragmented visibility – No single DAG view of the
entire run; execution is split across DAGs

Questions?

linkedin.com/in/stevengwoods

