
GitHub’s Airflow Journey
Lessons, Mistakes, and
Insights

Oleksandr Slynko

Data Engineer at GitHub for past 3,5 years
Have lots of experience building and
operating development platforms
Love upgrading software

About me

active DAGs teams

1000 70
tasks per day

50k+

Airflow at GitHub

GitHub is running Airflow for 9 years

● Got acquired by Microsoft
● Introduced GitHub Actions
● Acquired npm, Dependabot

and CodeQL
● Introduced GitHub Copilot

GitHub

● Added CHANGELOG
● Added Kubernetes executor
● Graduated from Apache

incubator
● Extracted DAG processor

from scheduler
● Added RBAC and audit

Airflow

Since 9 years ago

● Got acquired by Microsoft
● Introduced GitHub Actions
● Acquired npm, Dependabot

and CodeQL
● Introduced GitHub Copilot

● Got 18k pull requests

GitHub

● Added CHANGELOG
● Added Kubernetes executor
● Graduated from Apache

incubator
● Extracted DAG processor

from scheduler
● Added RBAC and audit

● Got 37k pull requests

Airflow

Since 9 years ago

11 lessons
about growing
Airflow usage

● Needed to get some data for billing in June 2016
● Added more and more DAGs
● Everything is critical and important

How it started

What if we monitor all DAGs for
failures?

Getting too many alerts

What if we monitor all some
DAGs for failures?

DAG monitoring is not enough
● You need to monitor underlying infrastructure
● Possibly monitor that DAGs finish at expected time

Lesson 0

We need more data for
analysis

We need more data for
analysis

Let’s add more people

Lesson 1

ETL is too much for a single team

Self-serve for ETL

● Use CODEOWNERS file
● Data owners are not always codeowners
● Someone who will debug and fix the issue when DAG fails
● Someone who can approve code
● Test it in CI and Airflow continuously

Lesson 2

Make sure code has owners

Follow Airflow best practices

● No one wants to learn the code, it is easier to copy
● Keep it up-to-date and running in your cluster

Lesson 3

Provide example DAG

● No one wants to learn the code, it is easier to copy
● Keep it up-to-date and running in your cluster
● Fix deprecations

Lesson 3

Provide example DAG

● No one wants to learn the code, it is easier to copy
● Keep it up-to-date and running in your cluster
● Fix deprecations
● Do not create custom DAG class

Lesson 3

Provide example DAG

● ruff
● SQLFluff
● Unit tests for required params in DAGs

Lesson 4

Do linting and code format

● DAG to do backfills of other DAGs with all the steps and configs

Lesson 5

Make backfills simple for users

Lesson 6

Check operators and connections
● Know your connection specifics and issues and test them

20%
Year comparison, excluding library
code

Increase in number
of PRs to Airflow
DAGs

100%
Increase in number
of issues with
Airflow DAGs

10%
increase for issues for our team more DAGs

30%

Running a
platform

Upgrades

Year long upgrade

Use open source knowledge
● Do not copy just code
● Contribute back PRs and issues

Lesson 7

● Codespaces/devcontainers - same setup inside container

Lesson 8

Simplify setup and development

● One staging is not enough
● It is hard to test upgrades on single environment

Lesson 9

Ephemeral dev environments

● It should be easy to change Airflow versions
● The test setup should be simple

Lesson 10

Simplify CI

● Use Dependabot

Lesson 11

Upgrade packages

months

4
Time to major upgrade Reduced issues by PR number increased by

20% 30%

Things to do

Test operators and
connections in DAG

Make sure you have dev
environment to test Fix deprecations

Things to do

Test operators and
connections in DAG

Make sure you have dev
environment to test Fix deprecations

Contribute to Airflow

Thank you

@alex-slynko

	Slide 1
	Slide 2
	Slide 3: 1000
	Slide 4: GitHub is running Airflow for 9 years
	Slide 5: Since 9 years ago
	Slide 6: Since 9 years ago
	Slide 7: 11 lessons about growing Airflow usage
	Slide 8: How it started
	Slide 9: What if we monitor all DAGs for failures?
	Slide 10: Getting too many alerts
	Slide 11: What if we monitor all some DAGs for failures?
	Slide 12: DAG monitoring is not enough
	Slide 13: We need more data for analysis
	Slide 14: We need more data for analysis Let’s add more people
	Slide 15: ETL is too much for a single team
	Slide 16: Self-serve for ETL
	Slide 17: Make sure code has owners
	Slide 18: Follow Airflow best practices
	Slide 19: Provide example DAG
	Slide 20: Provide example DAG
	Slide 21: Provide example DAG
	Slide 22: Do linting and code format
	Slide 23: Make backfills simple for users
	Slide 24: Check operators and connections
	Slide 25: 20%
	Slide 26: 100%
	Slide 27: 10%
	Slide 28: Running a platform
	Slide 29: Upgrades
	Slide 30: Year long upgrade
	Slide 31: Use open source knowledge
	Slide 32: Simplify setup and development
	Slide 33: Ephemeral dev environments
	Slide 34
	Slide 35: Simplify CI
	Slide 36: Upgrade packages
	Slide 37: 4
	Slide 38: Things to do
	Slide 39: Things to do
	Slide 40

