

How Airflow Runs the Weather



Eloi Codina-Torras

## About me



- Born near Barcelona
- Studied: Industrial Engineering
- Currently: Product Owner @ Meteosim
- 3rd Airflow Summit!

My family still doesn't understand what I do...





## What we do



We provide innovative environmental solutions

20 +

years of experience

600 +

numerical simulations run daily

**80 +** 

countries



## What we do: some examples









#### Risk Management

Plan operations and activate emergency plans based on weather forecasts.

#### Regulatory compliance

Ensure compliance with local air quality regulations, by predicting, monitoring and analyzing data.

#### Climatological studies

Simulate past and future meteorological scenarios for various custom applications.



#### What we do: who uses our data



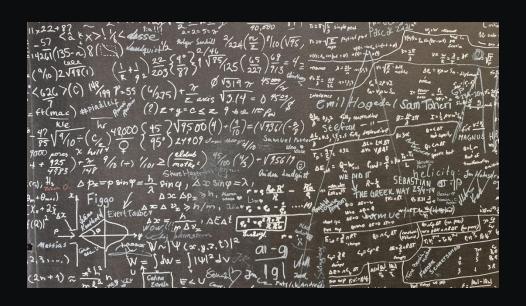
Insurance companies Assess risk for extreme weather conditions

Oil & Gas companies

Manage the environmental impact of their

operations and react to emergencies

Mining companies Manage the environmental impact of their operations


Waste & water companies Manage smell complaints

Public institutions Assess climate change impact









The base of our services is solving complex differential equations using various numerical simulations.

#### Weather simulations: the basics



- We use WRF, an open-source NWP System developed by NCAR (USA)
- 3D high resolution (up to 333 m and 10 minutes) local weather forecasts



#### Global models:

- GFS (NOAA)
- IFS (ECMWF)
- ICON (Germany)
- ...

28 km resolution Hourly data



## Weather simulations: the basics



- We use WRF, an open-source NWP System developed by NCAR (USA)
- 3D high resolution (up to 333 m and 10 minutes) local weather forecasts



#### Local models: what we simulate

Based on global models. Improves the geographic and temporal resolution Needs real observation data to validate it.



## Air quality simulations: the basics



- Based on our weather forecasts and real / estimated emissions
- We generate 3D air quality simulations of up to 100 m resolution
- We use several models tailored to different requirements (chemical emergencies, city pollution, ...)









## We use Airflow to orchestrate our simulation models

We used crontab many years ago. It was not very scalable...

## Our workflows



## Download global models

Shared for all our local simulations

# External ZaskOP Run local weather simulation

- Preprocess the data
- Run the simulation
- Process the simulation
- Generate insights

## Run local air quality simulations

- Preprocess the data
- Run the simulation
- Process the simulation
- Generate insights

#### **Download observations**

To continually improve our simulations





- Our simulations are power hungry
- An area such as Washington State would require:

#### **Parameters**

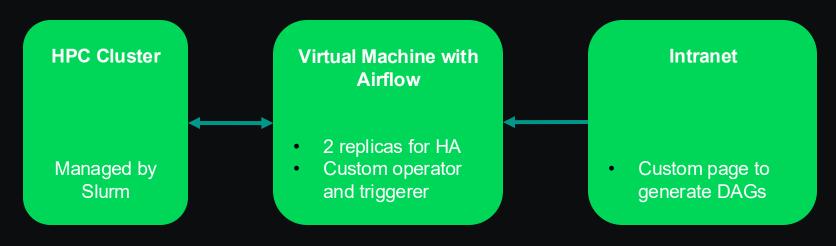
- 1 simulation per day
- 72 hours
- 1 km resolution

#### Cluster

- 256 CPUs
- 1 TB memory

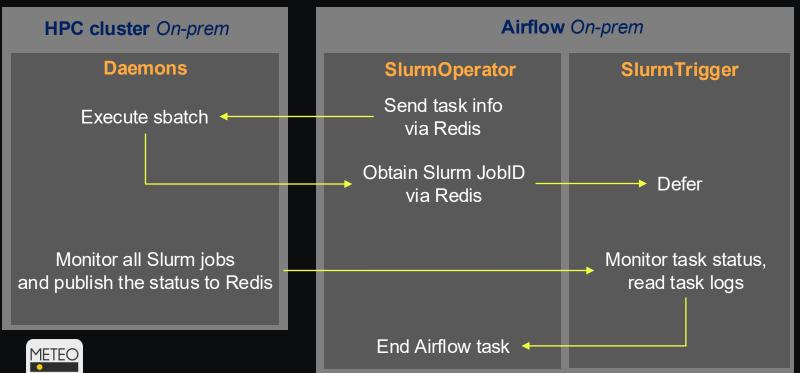
Compute time

10 hours


**Cloud cost** 

\$6000 /month






- This is why we have our own HPC
- Managed by Slurm (manages resources and allocation in HPCs)

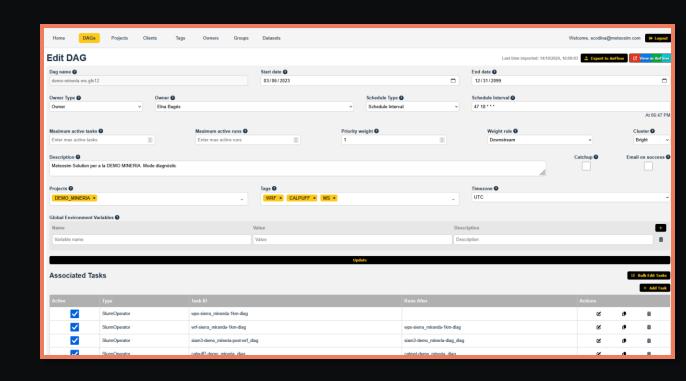















We use an Intranet to generate Dags in YAML

They are parsed using dag-factory

This way we can have templates





## How Airflow enables our operations



#### Ease of use

- Intuitive web interface
- No need to remember Slurm commands
- Automatic retries for failed tasks
- Automatic notifications for failed tasks
- Support for YAML Dags

#### Visibility

- Run history
- Real-time logs on the web interface
- Charts







## How Airflow enables our operations



- We use Airflow a lot
- Other use cases: simulation validation, reporting, notifications, clean-up,

...

Our instance:

+600 active Dags

2.2M annual Dag runs

96% success rate



## What's next for us



#### **Upgrade**

Upgrade to **Airflow 3.1** (currently in 2.10)

- New UI + i18n
- Online backfills
- Lower resources
- Dag versions

#### **EdgeExecutor**

Test the new **EdgeExecutor**.

Try to remove our custom SlurmOperator and SlurmTriggerer

#### **Implement assets**

Use assets everywhere.

We have to investigate how to have visibility on unscheduled Dags.








## Questions?



