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Framework



Goals
- Compare Airflow 2 and Airflow 3
- Test scaling limits

- Make the tests
- easy to run
- reproducible

- Continuously monitor Airflow 
code performance



Testing framework – AIP-59

- Test performance of Airflow components
- Detect performance changes between 

Airflow versions
- Improve transparency of performance 

changes in Apache Airflow releases
- Identify changes that have impact on 

performance
- Let users test their setup



Testing framework - concepts
- Instance – definition of Airflow installation setup
- Performance DAG – definition of DAG that is executed during the test
- Test suite – combination of Instance and Performance DAG



Testing framework - instance
- Instance type – e.g. Docker Compose, Kubernetes
- number of schedulers and workers
- component CPU and memory
- machine types

Instance configuration file can include Jinja style 
placeholders that are populated in Test suite



Instance config
Sample configuration with template 
parameters



Testing framework - performance DAG
Example configuration options:

- PERF_DAG_FILES_COUNT
- PERF_DAGS_COUNT
- PERF_TASKS_COUNT
- PERF_SHAPE – “no_structure”, “linear”, “binary_tree”, “star”, “grid”
- PERF_OPERATOR_TYPE – “python”, “bash”, etc.



Test suite
- multiple tests in a single “study”

- load template values from file

- override at any level



Testing framework - test suite

Run DAGs

Prepare instance
create or reuse

Generate DAGs
and upload

Wait for DAGs
and unpause

Write metrics Delete instance
if requested



Results – metrics
- Resource utilization

- CPU
- Memory
- Network

- Monitored components
- Worker
- Scheduler
- Triggerer
- database

- Durations
- Total time
- DAG run time
- Task run time



How are the results stored?
- CSV files
- BigQuery tables

- Low-level metrics
- High-level statistics



Performance
Test
Results



Baseline scenario
Instance setup

- Google Kubernetes Engine (GKE)
- 6 workers (2 vCPU, 7.5 GB memory, 20 GB disk)
- 2 schedulers (1 vCPU, 4 GB memory, 5 GB storage)
- Postgres database



Tests overview
- Airflow 3.0.0
- Airflow 2.10.5

- 10 DAGs with z tasks each (n = 10z)
- n = 100, 1k, 5k, 10k
- No-op python operator tasks



Airflow 2 vs Airflow 3

Test total duration

Test duration [seconds]

Average task duration [seconds]Task average duration



Airflow 2 vs Airflow 3

Task average duration

Task duration breakdown [seconds]



Airflow 2 vs Airflow 3

Memory consumption

Worker memory [GB]

Scheduler memory [GB]



Airflow 2 vs Airflow 3

CPU usage

Worker CPU

Scheduler CPU



First conclusions
- Airflow 3 overall performs better than Airflow 2
- Airflow 3 utilizes resources better (faster to finish using more CPU)
- Airflow 3 uses a bit more memory



Number of schedulers

Running with 1, 2 or 3 schedulers

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]
Conclusions

- Airflow 3 benefits from having 
2 schedulers

- Airflow 2 does not benefit from 
having more than 1 scheduler

- No benefit from having
third scheduler



Number of workers
Running with 3, 6 or 9 workers

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]
Conclusions

- Airflow 3 scales better with 
number of workers

- 3 → 6 workers – linear scaling
- 6 → 9 workers – smaller benefit



Conclusions



Conclusions
- Performance tests can show performance improvement and degradation
- The developed framework makes it possible to run various scenarios

- Airflow 3 is more performant than Airflow 2
- Airflow 3 better utilizes resources

- 3 schedulers are unnecessary, unless used for availability
- Scaling workers is linear until a certain point



Future
- Publish performance framework code
- Run performance tests on each release
- Run performance tests daily
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