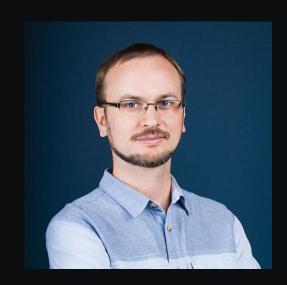


Lessons learned for scaling up Airflow 3 in Public Cloud

Przemek Więch, Augusto Hidalgo, Michał Modras


Nice to meet you!

Przemek Więch

Software Engineer at Google in Warsaw since 2011

Cloud Composer team since 2019

PhD in Computer Science from the Warsaw University of Technology

Nice to meet you!

Michał Modras

Engineering Manager @ Google Cloud Composer team since 2022

Member of Airflow Summit organization committee

Agenda

- Performance testing framework
- Test results
 - Airflow 3 vs Airflow 2
 - Tweaking various parameters
- Conclusions

Performance Framework

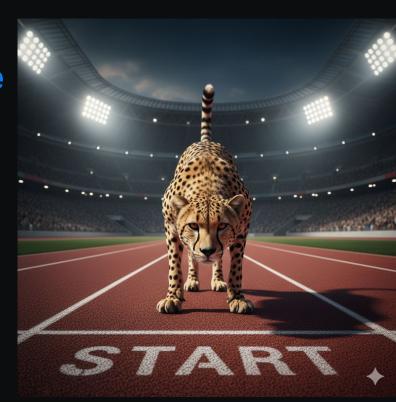
Goals

- Compare Airflow 2 and Airflow 3
- Test scaling limits
- Make the tests
 - easy to run
 - reproducible
- Continuously monitor Airflow code performance

Testing framework - AIP-59

- Test performance of Airflow components
- Detect performance changes between Airflow versions
- Improve transparency of performance changes in Apache Airflow releases
- Identify changes that have impact on performance
- Let users test their setup

Testing framework - concepts


- Instance definition of Airflow installation setup
- Performance DAG definition of DAG that is executed during the test
- **Test suite** combination of Instance and Performance DAG

Testing framework - instance

- Instance type e.g. Docker Compose, Kubernetes
- number of schedulers and workers
- component CPU and memory
- machine types

Instance configuration file can include Jinja style placeholders that are populated in Test suite

Instance config

Sample configuration with template parameters

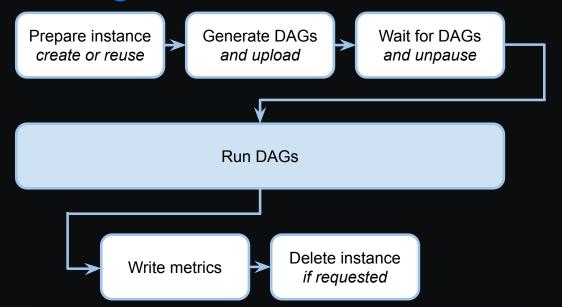
```
"environment type": "VANILLA GKE",
"project id": "{{project id}}",
"airflow image tag": "{{airflow image tag}}",
"docker image": "{{docker image}}",
"env variable sets": {{env variable sets}},
"helm chart sets": {{helm chart sets}},
"force routing": {{force routing}},
"values file": "{{values file}}",
"cluster config": {
  "name": "{{cluster id}}",
  "locations": [
    "{{zone id}}"
  "node pools": [
      "name": "default-pool",
      "config": {
        "machine type": "{{machine type}}",
        "disk size gb": {{disk size gb}},
        "oauth scopes": ["https://www.googleapis.com/auth/cloud-platform"],
      "initial node count": {{node count}}
  "default max pods constraint": {
      "max pods per node": {{max pods per node}}
  "network config": {
    "network": "projects/{{project id}}/global/networks/{{network id}}",
    "subnetwork": "projects/{{project id}}/regions/{{location id}}/subnetworks/{{subnetv
  "ip allocation policy": {
    "use ip aliases": {{use ip aliases}}
  Handricks almoster confident f
```


Testing framework - performance DAG

Example configuration options:

- PERF_DAG_FILES_COUNT
- PERF_DAGS_COUNT
- PERF_TASKS_COUNT
- PERF_SHAPE "no_structure", "linear", "binary_tree", "star", "grid"
- PERF_OPERATOR_TYPE "python", "bash", etc.

Test suite


- multiple tests in a single "study"

- load template values from file
- override at any level

```
"study components": [
 2
 3
           "component name": "vanilla gke airflow 2",
           "args": {
 5
             "environment specification file path": "configurations/config generic.json",
 6
             "jinja variables": {
               "airflow image tag": "2.10.5"
 8
 9
10
11
12
13
           "component name": "vanilla gke airflow 3",
14
           "args": {
             "environment specification file path": "configurations/config generic.json",
15
             "jinja variables": {
16
17
               "airflow image tag": "3.0.0"
18
19
20
21
22
       "default args": {
23
         "results project id": "airflow-performance-tests",
         "results dataset": "airflow-performance-tests-dataset",
24
25
         "jinja variables": {
           "location id": "us-central1",
26
27
           "machine type": "n1-standard-8",
28
           "node count": "6",
29
           "values file": "values/environment.yaml"
30
31
32
       "default flags": |
33
         "delete if exists",
34
         "delete upon finish"
35
36
       "default attempts": 3
37
```


Testing framework - test suite

Results - metrics

- Resource utilization
 - CPU
 - Memory
 - Network
- Monitored components
 - Worker
 - Scheduler
 - Triggerer
 - database

- Durations
 - Total time
 - DAG run time
 - Task run time

How are the results stored?

- CSV files
- BigQuery tables

- Low-level metrics
- High-level statistics

Row	id /	run_at	configuration	configuration_id /	airflow_sched	airflow_sc	airflow_sche	airflow_sch	airflow_sche	airflow_sche
2	415	2025-09-24T09:15:31	{"AIRFLOW_CORE_STO RE_SERIALIZED_DAGS": "Unknown", "airflow_version": "3.0.0", "composer_api_endpoint":	5bb3ea69238	0.442061658	0.44	112390144.0	112.39 MB	695173120.0	695.17 MB
3	8a2	2025-09-26T16:46:09	{"AIRFLOW_CORE_STO RE_SERIALIZED_DAGS": "Unknown", "airflow_version": "2.10.5", "composer_api_endpoint":	ecfcf653894a	1.1774829652	1.18	155245468.9	155.25 MB	941590098.5	941.59 MB
4	3c5	2025-09-24T09:15:	{"AIRFLOW_CORE_STO RE_SERIALIZED_DAGS": "Unknown", "airflow_version": "2.10.5", "composer_api_endpoint":	fd6eb285e31	0.423571309	0.42	155912192.0	155.91 MB	833375232.0	833.38 MB
5	b5ff	2025-09-22T14:57:	{"AIRFLOW_CORE_STO RE_SERIALIZED_DAGS": "Unknown", "airflow_version": "2.10.5", "composer_api_endpoint":	bf2afe8d8ab8	0.596778456	0.60	103871093.1	103.87 MB	582683761.7	582.68 MB
6	93a	2025-09-25T09:02:19	("AIRFLOW_CORE_STO RE_SERIALIZED_DAGS": "Unknown", "airflow_version": "3.0.0", "composer_api_endpoint":	27493d941c1	1.7942445586	1.79	110429440.0	110.43 MB	1011907072.0	1.01 GB

Performance Test Results

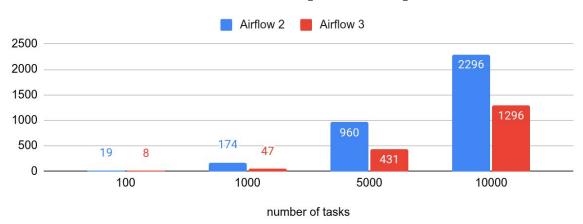
Baseline scenario

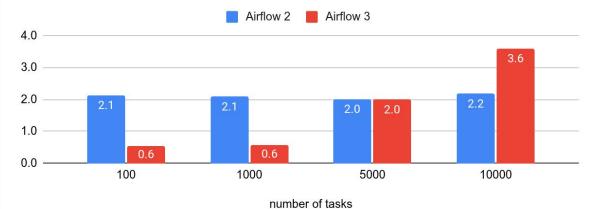
Instance setup

- Google Kubernetes Engine (GKE)
- 6 workers (2 vCPU, 7.5 GB memory, 20 GB disk)
- 2 schedulers (1 vCPU, 4 GB memory, 5 GB storage)
- Postgres database

Tests overview

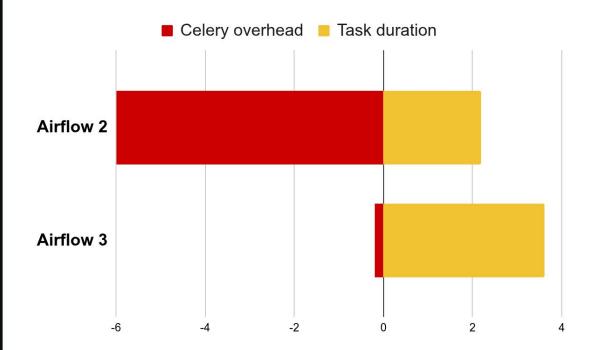
- Airflow 3.0.0
- Airflow 2.10.5


- 10 DAGs with z tasks each (n = 10z)
 - n = 100, 1k, 5k, 10k
 - No-op python operator tasks

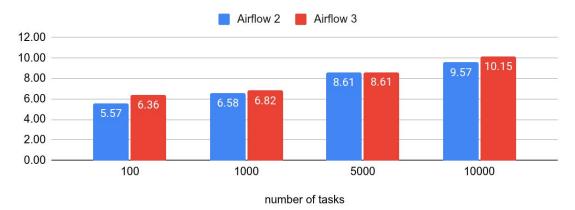

Test total duration

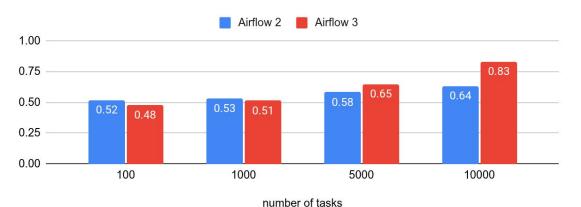
Task average duration

Test duration [seconds]


Average task duration [seconds]

Task average duration

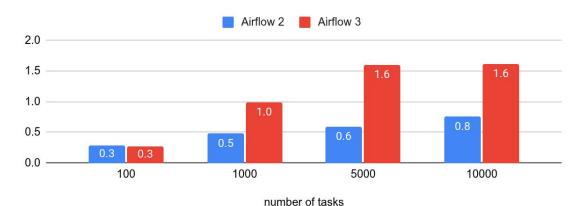

Task duration breakdown [seconds]



Memory consumption

Worker memory [GB]

Scheduler memory [GB]



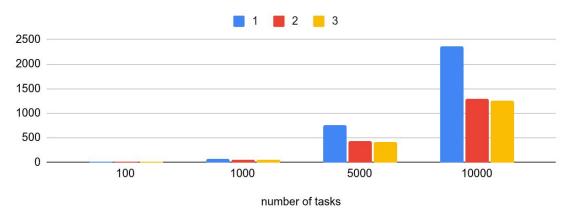
CPU usage

Worker CPU Airflow 2 Airflow 3 30.0 28.3 20.0 22.4 10.0 12.2 1.7 0.9 100 1000 5000 10000 number of tasks

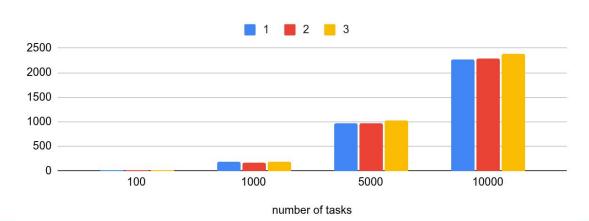
Scheduler CPU

First conclusions

- **Airflow 3** overall performs better than Airflow 2
- **Airflow 3** utilizes resources better (faster to finish using more CPU)
- Airflow 3 uses a bit more memory


Number of schedulers

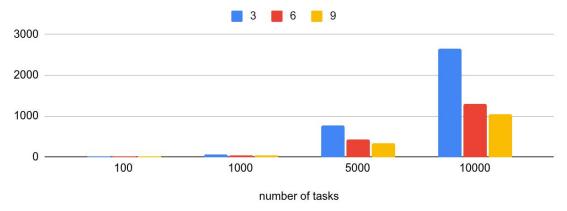
Running with 1, 2 or 3 schedulers


Conclusions

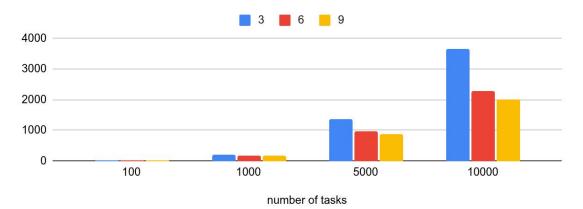
- Airflow 3 benefits from having
 2 schedulers
- **Airflow 2** does not benefit from having more than 1 scheduler
- No benefit from having third scheduler

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]


Number of workers

Running with 3, 6 or 9 workers


Conclusions

- Airflow 3 scales better with number of workers
- $3 \rightarrow 6$ workers linear scaling
- $6 \rightarrow 9$ workers smaller benefit

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]

Conclusions

Conclusions

- Performance tests can show performance improvement and degradation
- The developed framework makes it possible to run various scenarios
- Airflow 3 is more performant than Airflow 2
- Airflow 3 better utilizes resources
- 3 schedulers are unnecessary, unless used for availability
- Scaling workers is linear until a certain point

Future

- Publish performance framework code
- Run performance tests on each release
- Run performance tests daily

Questions?

pwiech@oogle.com michalmodras@google.com augustoh@google.com