
Lessons learned for 
scaling up Airflow 3
in Public Cloud

Przemek Więch, Augusto Hidalgo,
Michał Modras



Nice to meet you!
Przemek Więch

Software Engineer at Google in Warsaw since 2011

Cloud Composer team since 2019

PhD in Computer Science
from the Warsaw University of Technology



Nice to meet you!
Michał Modras

Engineering Manager @ Google Cloud Composer team 
since 2022

Member of Airflow Summit organization committee



Agenda
- Performance testing framework
- Test results

- Airflow 3 vs Airflow 2
- Tweaking various parameters

- Conclusions



Performance
Framework



Goals
- Compare Airflow 2 and Airflow 3
- Test scaling limits

- Make the tests
- easy to run
- reproducible

- Continuously monitor Airflow 
code performance



Testing framework – AIP-59

- Test performance of Airflow components
- Detect performance changes between 

Airflow versions
- Improve transparency of performance 

changes in Apache Airflow releases
- Identify changes that have impact on 

performance
- Let users test their setup



Testing framework - concepts
- Instance – definition of Airflow installation setup
- Performance DAG – definition of DAG that is executed during the test
- Test suite – combination of Instance and Performance DAG



Testing framework - instance
- Instance type – e.g. Docker Compose, Kubernetes
- number of schedulers and workers
- component CPU and memory
- machine types

Instance configuration file can include Jinja style 
placeholders that are populated in Test suite



Instance config
Sample configuration with template 
parameters



Testing framework - performance DAG
Example configuration options:

- PERF_DAG_FILES_COUNT
- PERF_DAGS_COUNT
- PERF_TASKS_COUNT
- PERF_SHAPE – “no_structure”, “linear”, “binary_tree”, “star”, “grid”
- PERF_OPERATOR_TYPE – “python”, “bash”, etc.



Test suite
- multiple tests in a single “study”

- load template values from file

- override at any level



Testing framework - test suite

Run DAGs

Prepare instance
create or reuse

Generate DAGs
and upload

Wait for DAGs
and unpause

Write metrics Delete instance
if requested



Results – metrics
- Resource utilization

- CPU
- Memory
- Network

- Monitored components
- Worker
- Scheduler
- Triggerer
- database

- Durations
- Total time
- DAG run time
- Task run time



How are the results stored?
- CSV files
- BigQuery tables

- Low-level metrics
- High-level statistics



Performance
Test
Results



Baseline scenario
Instance setup

- Google Kubernetes Engine (GKE)
- 6 workers (2 vCPU, 7.5 GB memory, 20 GB disk)
- 2 schedulers (1 vCPU, 4 GB memory, 5 GB storage)
- Postgres database



Tests overview
- Airflow 3.0.0
- Airflow 2.10.5

- 10 DAGs with z tasks each (n = 10z)
- n = 100, 1k, 5k, 10k
- No-op python operator tasks



Airflow 2 vs Airflow 3

Test total duration

Test duration [seconds]

Average task duration [seconds]Task average duration



Airflow 2 vs Airflow 3

Task average duration

Task duration breakdown [seconds]



Airflow 2 vs Airflow 3

Memory consumption

Worker memory [GB]

Scheduler memory [GB]



Airflow 2 vs Airflow 3

CPU usage

Worker CPU

Scheduler CPU



First conclusions
- Airflow 3 overall performs better than Airflow 2
- Airflow 3 utilizes resources better (faster to finish using more CPU)
- Airflow 3 uses a bit more memory



Number of schedulers

Running with 1, 2 or 3 schedulers

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]
Conclusions

- Airflow 3 benefits from having 
2 schedulers

- Airflow 2 does not benefit from 
having more than 1 scheduler

- No benefit from having
third scheduler



Number of workers
Running with 3, 6 or 9 workers

Airflow 3 – test duration [seconds]

Airflow 2 – test duration [seconds]
Conclusions

- Airflow 3 scales better with 
number of workers

- 3 → 6 workers – linear scaling
- 6 → 9 workers – smaller benefit



Conclusions



Conclusions
- Performance tests can show performance improvement and degradation
- The developed framework makes it possible to run various scenarios

- Airflow 3 is more performant than Airflow 2
- Airflow 3 better utilizes resources

- 3 schedulers are unnecessary, unless used for availability
- Scaling workers is linear until a certain point



Future
- Publish performance framework code
- Run performance tests on each release
- Run performance tests daily



Questions?

pwiech@oogle.com
michalmodras@google.com

augustoh@google.com

mailto:pwiech@google.com
mailto:michalmodras@google.com
mailto:augustoh@google.com

