AIRFLOW.
SUMMIT

Multi-instance As
Synchronization

Push or Pull ?

Sébastien Crocquevieille

rfee i Ming e pefre peire

What we do

We generate value and growth for our clients by turning their digital marketing expenses into impactful and profitable
data-driven investments.

g WA N . R
CRM & Loyalty Management Numberly Martech Platform Digital Media
e 1stParty Data Collection Content builder * Media Strategy .
e Customer Journey design Marketing Automation tool e Fullfunnel selivalien . .
e Omnichannel campaign management Messaging APIs * Data Collaboration & Retail Media
~ Clean Room management Impactly ° Experimentation & measurement
° Incrementality & CLV
\ 2R 2N)
: ™
Data Strategy & Insights
Digital Consulting Insights & Analytics Al-driven solutions Numberly Academy
J

Confidential - 3 numberly

Numberly the Marketing Technologist

We are around since 2000, HQ in Paris France.

A &= [@& & m &

Paris Brussels London Amsterdam Dubai Tel Aviv New-York

95% of Our Infrastructure is Self-Hosted on Bare Metal Servers
We are our own Internet Service Provider.

We commit to Open Source & Developer Community
o Numberly Github, OSS financing, Europython Sponsor 11 years straight

Self hosted Airflow users since 2017 - version 1.X

Montréal

Numberly the Marketing Technologist

Airflow Key Figures in Production:
e 1817 DAGs on 2 instances with 3471 Datasets

e 16 500 daily DagRuns with 44 500 daily TaskiInstances

WhoAml

Who Am | ?

Sébastien Crocquevieille
Data Engineer @ Numberly You can call me SEB
French & Mexican

Airflow user since 2018

EuroPython 2023 Speaker
O Orchestrating Python Workflows in Apache Airflow

Pycon TW 2025 Speaker

https://www.ep2023.europython.eu/session/orchestrating-python-workflows-in-apache-airflow/

Events vs Assets
Scheduling

Disclaimer

THE CHARACTERS AND EVENTS DEPICTED IN THIS PHOTOPLAY
ARE FICTITIOUS. ANY SIMILARITY TO ACTUAL PERSONS,
LIVING OR DEAD, IS PURELY COINCIDENTAL.

External Events

It could be anything that happens outside Airflow
e Any message/post
e Anychangein avalue

e Any detectable action or signal

looomercis group

Event Driven Scheduling (Airflow 3.0)

Design:

Execution that strictly Follows external events
Individual action based on payload ?

1 to 1 execution

In practice:

A little complex to set up
o AssetWatcher: monitors external event source via triggers

Requires guarantees concerning:
o Ensuring deliverability
o Avoiding duplicate events
o Ordering ??

‘ ocomercis group

Asset-Aware Scheduling (Airflow 2.4)

Design:
e Event that indicates a change in Data Source
e Data source changes are indistinguishable
Constraints:

e Similar to Event Driven but with lower constraints
o 1 to 1 execution not guaranteed
o Order of events shouldn’t be important

e No triggers needed, just Airflow Assets

‘ ocomercis group

Airflow (Data) Assets

from airflow.sdk import Asset

example_asset = Asset("s3://asset-bucket/example.csv")

e Itisjust astring — representing a Data Source
e Storedin Airflow DB
e Maintaining link is YOUR responsibility

e Generated by DAG parsing

vvvvvvvvvvv

Upscaling our
Scheduling

Airflow Scheduler

Parsing, Scheduling & Executing

read
author DAG files
..
install
Scheduler
install ul
—_— .
install
P

Airflow User Plugin folder

& installed packages

operate / API Server

Metadata DB

numberly

looomercis group

Performance issues

Machine performance
o High CPU and RAM usage
o Scheduler heartbeat failures
o dag_processing.total_parse_time is high

looomercis group

Performance issues

Machine performance
o High CPU and RAM usage
o Scheduler heartbeat failures
o dag_processing.total_parse_time is high

Slow scheduling
o Many tasks in “queued” or "scheduled” state
o Delayed DAG runs

‘ ocomercis group

Performance issues

Machine performance
o High CPU and RAM usage
o Scheduler heartbeat failures
o dag_processing.total_parse_time is high

Slow scheduling
o Many tasks in “queued” or "scheduled” state
o Delayed DAG runs

Database limitations
o Too many connections
o Slow queries

‘ ocomercis group

irflow Remote Executors

Parsing, Scheduling & Executing

a
|
sync — - B R o3
Y Triggerer(s) = A
author {7
v
B
- + Metadata DB
DAG Author DAG files [Exeesion
Scheduler(s) Worker(s)
sync
install
install
o
1
—
operate
B g -
Deployment Manager Plugin folder
&instalied packages
API Server(s) Operations User
install

numberly

looomercis group

Airflow Remote Executors

Pros:

e Robust: decoupling workers from scheduler process
e Effective: Worker parallelization

e Available: Low latency workers always running

numberly

Airflow Remote Executors

CLOUD INFRASTRUCTURE
* * X

Cons:
e Requires Infrastructure setup
e Can be Expensive: Cloud cost

numberly

Still having issues?

‘ ocomercis group

Scheduler Replication

Running More Than One Scheduler [link]

Airflow supports running more than one scheduler concurrently - both for performance reasons and for resiliency.

numberly

Scheduler Replication

Pros:

e Split scheduling load
e More resilient

e Not much work

Cons:
e More Database operations

‘ ocomercis group

Need more ?

looomercis group

Separate Instances

Just have 2 Airflows

Pros:

e Maximum scalability

e Separation of Concerns
e Better Access Control

Separate Instances

Just have 2 Airflows ?!

Cons:

e Even more maintenance
e Even more resources

e Redundant operations

Assets
+

Multiple instances

Synchronizing Airflow
Assets

Our use case

Airflow Migration 2.4 — 2.10 (latest version)
Complete dependency overhaul (Python & Spark)
Big dag library (~2000 DAGSs)

From instance to new

Upgrading code as we migrate

=
X 2.10

looomercis group

Our use case

DAG batches
A 24
ElEE

Migrating DAGs by batches based on
Complexity

Dependencies

Missing features

Urgency

O

O O O

Specific needs:
o Crossinstance DAG Trigger
o Cross instance Task sensor

What about Airflow Assets? = Synchronization!

vvvvvvvvvvv

Push or Pull ?

Push

How do we start?

By getting the Asset Events!

numberly

GET /datasets/events v

Response samples

200

Content type
application/json

Copy Expandall Collapse all
{

— "dataset_events™: [

"dataset_id": o,
“"dataset_uri": “string”,
"extra®™: { },
"source_dag id": “string”,
"source_task_id": "string”,
"source_run_id": “string”,
"source_map_index": @,

+ "created dagruns”: [..],

"timestamp™: "string”

-

]J

"total _entries™:

-

numberly

Design choices

e Using Airflow API to get Asset Events

o Filter by -timestamp & store the “offset” in Airflow Variables

numberly

@ Kafka Eye e

v1.12.0

©

Connectors Schemas io Consumer Live Query

I io Consumer

airflow-dataset-synchronizer.dataset-events

- Partition Start From

All Earliest OlLatest [Date (Paris time) O | Timestamp or oid O |offset

I Control

n '_] Ll Mfsgfﬂm Keyword filter DHeaders OKey '

2025-09-01 22:35:42 1756758942053 26492 T g {' — W m— o en e g e e ———
2025-09-01 22:07:57 1756757277595 0 26491 b - —- - " _— - W — g— ——
2025-09-01 22:07:57 1756757277595 0 26490 P St v a—— o w— - (N— N — A T ————— — " —— w—— "
2025-09-01 22:02:29 1756756949361 0 26489 (e d - - - { L W e SEPe g W — ——— — —
2025-09-01 21:51:55 1756756315091 0 26488 P St g e e —— (| — W w— e Sl g ————— ——— w—— W
2025-09-01 21:51:55 1756756315091 0 26487 hoe Land { -~ — - L aud S ——
2025-09-01 21:41:20 1756755680563 0 26486 Pre twtw g e e m— s — — . w e w e g e e — o — .-
2025-09-01 21:37:49 1756755469318 0 26485 b —— - - n — - — wg—— -
2025-09-01 21:37:49 1756755469318 0 26484 From S — ————— — - {"— — . L —— ———— —— - —— -
2025-09-01 21:32:16 1756755136838 0 26483 L {"— e e — TN e——
2025-09-01 21:31:47 1756755107354 0 26482 [R e B T
2025-09-01 21:24:43 1756754683595 0 26481 Pee ————— - - - - - o —— o
2025-09-01 21:18:41 1756754321064 0 26480 Fr twr v — - - - [— N —— S— O — ———— — — | W w—
2025-09-01 21:07:40 1756753660001 0 26479 g - - (" - "N _— - - .- —— -
2025-09-01 21:07:40 1756753660001 0 26478 b et et e mm Sy e [e) e ww w CaR e wmee am— vy g -
2025-09-01 21:03:34 1756753414963 0 26477 P - - { L e e CEPewel g W R ———— — W
2025-09-01 20:42:26 1756752146414 0 26476 Prm S - - —— - [— W S— — S O — —————— w— -
2025-09-01 20:37:31 1756751851238 0 26475 P — e { - N — — -~ — wg—— -
2025-09-01 20:37:31 1756751851238 0 26474 P St — - —— —— - {"— — e T —— ———— W w— " g—— -
2025-09-01 20:36:23 1756751783697 0 26473 [| — {"— W . e e e
2025-09-01 20:34:52 1756751692813 0 26472 brm S - - —— e — (" — N m— . m Ca a. w— — —— e— e— we——
2025-09-01 20:34:52 1756751692813 0 26471 Pow e cww e - - {"—— W ——

———— DT

looomercis group

Design choices

e Using Airflow API to get Asset Events
o Filter by -timestamp & store the “offset” in Airflow Variables

e Push them to a Kafka topic = Single source of truth for all Asset Events

Almost Done!

numberly

Some 403 issues

No POST endpoint for Dataset Events - Solved in 2.9
o Dirty DB editor DAG

Dataset Events POST doesn’t create NEW Datasets - “Solved” in 3.0 with Materialize EP

o Make my own materialize DAG

=> Conflict between parsed objects (Dataset) and created objects (Dataset Events)

Datasets cannot be dynamically created - Solved in 2.10 with DatasetAlias
o Go to latest version (at the time) 2.10

looomercis group

Design choices

e Using Airflow API to get Asset Events
o Filter by -timestamp & store the “offset” in Airflow Variables

e Kafka topic = Single source of truth For all Asset Events

e Push back to Airflow through 3 different methods

numberly

DB editing DAG
.

Al:

=

o

POST DatasetEvent

D

i<

2.10

=

DatasetAlias DAG
-

consumers

o
Hz.w

Design

| [

producers

num

MO MO XD

berly

looomercis group

"dataset 1d": 1int,
"dataset name": URI,

"event i1d": int,

"event _timestamp": Datetime,
"origin": AIRFLOW INSTANCE URL,
"source_dag": DAG_ID,

"source task": TASK ID

numberly

It works !

Or Pull ?

Pull Based Scheduling

Airflow PULL from external instances directly

Use Event based scheduling
o lgnore the fact that we need another migration

Poll Asset Events continuously to stay updated

Asset Watcher = Asset Event = DAG execution

looomercis group

Let's code together

Using an Asset Watcher

from airflow.sdk import AssetWatcher

my_watcher = AssetWatcher(name="my_watcher", trigger=2???)

trigger: BaseEventTrigger | dict

Base Event Trigger

CLASS:
e Inherits from BaseEventTrigger
OBLIGATORY METHODS:

e serialize
o Class path & arguments required for initialization must be serializable

® run
o The actual trigger operation
e _init__
OPTIONAL METHODS:
e cleanup

e _set_context

looomercis group

from airflow.triggers.base import BaseEventTrigger, TriggerEvent

class SimpleEventTrigger (BaseEventTrigger):
def __init_ (self, url: str, *xkwargs):
self.url = url

def serialize(self) — tuple[str, dict[str, Any]l]:
return (

"event_scheduling.SimpleEventTrigger",
s'url?: self.urlt,

async def run(self) — AsyncIlterator[TriggerEvent]:
while True:
event_str = await aiohttp.get(self.url).text()
if not event str:
continue
else:

yield TriggerEvent(event_str)

from airflow.sdk import Asset, AssetWatcher

trigger = SimpleEventTrigger (url="http://magic/airflow_endpoint")
my_asset = Asset(

"simple_trigger asset", watchers=[AssetWatcher(name="my_watcher", trigger=trigger)]

with DAG(dag_id="event_scheduled_job", schedule=[my_asset]) as dag:

numberly

looomercis group

Triggerer Process

ing even oc=
Got event: a9a6e4384bflakade26701bdfd2e25906977509f6a5dccde299e1bb9642be29b [
Checking event for novelty [1 loc=

Getting event [1 loc=

Got event: a9a6e4384bflakad@26701bdf 77509f

Checking event for novelty [loc=

Getting event [loc=

Got event: a9aée4384bflatad@26701bdf 77509 9e1bb9642be29b
Checking event for novelty [loc=

Getting event [loc=

Got event: a9aée4384bflatad@26701bdf

Checking event for novelty [loc=

Getting event [loc=

Got event: a9a6e4384bflakad@26701bdf 977509 f 9e1bb9642be29b
Checking event for novelty [1 loc=

Getting event [1 loc=

Got event: a9a6e4384bflatad@26701bdfd2e25906977569f6a5dccde299elbb9642be29b
Checking event for novelty [1 loc=

Getting event [1 loc=

Got event: a%9a6e4384bflatad@26701bdf 7750916 1bb9642be29b
Checking event for novelty [1 loc=

Getting event [1 loc=

Got event: a9a6e4384bflakad@26701bdfd2e25906977509f6a5dccd@299e1lbb9642be29b
Checking event for novelty [1 loc=

Getting event [loc=

Got event: a9aée4384bflatad@26701bdf 1bb9642be29b
Checking event for novelty [loc=

Getting event [loc=

Got event: a9a6e4384bflakad@26701bdf 977509 99e1bb9642be29b
Checking event for novelty [loc=

Getting event [loc=

Got event: a9aée4384bflatade26701bdf 1bb9642be29b
Checking event for novelty [loc=

Getting event [1 loc=

Got event: a%9a6e4384bflakade26701bdfd2e25906977509f6a5dccd8299e1bb9642be29b
Checking event for novelty [] loc=

Getting event []

Got event: a9aée4384bflatade26701bdf 77509f6a5d

Checking event for novelty []

Getting event []

Got event: a9a6e4384bflakad@26701bdf 77509 1bb9642be29b
Checking event for novelty [loc=

Getting event [loc=

Got event: a9aée4384bflasad@26701bdf 77509 99e1bb9642be29b
Checking event for novelty [loc=

Getting event [loc=

Got event: a9a6e4384bflatade26701bdf 1bb9642be29b
Checking event for novelty [lo

Getting event [

Got event: a%9a6e4384bflakad826701bdf 977509 99e1bb9642be29b
Checking event for novelty [=

Getting event [

Got event: bflasade26701bdf 1bb9642be29b
Checking event for novelty [loc=

Getting event [] loc=

Got event: a9a6e4384bflakad@26701bdfd2e25906977509f6a5dccd@299e1bb9642be29b

numberly

Existing Event Triggers

Event Triggers:
e KAFKA: KafkaMessageQueueTrigger
e GENERIC MQ: MessageQueueTrigger
Base Triggers:
e REDIS: AwaitMessageTrigger

e GOOGLE: GCSBlobTrigger

e AWS: EC2StateSensorTrigger, S3KeyTrigger, ...

numberly

Pull based scheduling

Caveats:

e “run” method is king
o Error handling

Pagination

Authentication

No blocking

Not heavy

O O O O

e Know where your Triggerers are running
o Doyouhaveone?
o Isitsharing scheduler resources ?

e Use cases outside message queues are “exploratory” if possible

numberly

looomercis group

So...can we pull ?

Using Pull ?

[

||[Im producers
consumers

X
=
X

AL
[
MO MO XD

Event Scheduling AacHE
§€ katka.

numberly

looomercis group

Using Pull ?

| 10

consumers

producers

X
=
X

AL
MO MO XD

Event Scheduling ? -
§3 katka.

numberly

looomercis group

Cost of pulling

With the queue ?

e Constant triggerer polling AIIIFI(IW 'I'IIIGGEII P‘".““G
-r-n ¥ " .

o Less accurate than push
o Ornoisy

e Still need to push to queue
o Keep dedicated service?
o Use custom “high frequency” DAGs ?

And without the queue?

e APIrequest + Airflow Variable . Lam,speed

e 0O(n”2) network calls

e Even More Airflow Activity

numberly

So the choice is

I'm still on Airflow 2!

numberly

Question time'!

Bonus

THE DATA FLOWCAST

Scaling On-Prem Airflow
With 2,000 DAGs
at Numberly

with Sébastien Crocquevieille

