
Multi-instance Asset
Synchronization

-
Push or Pull ?

Sébastien Crocquevieille

Numberly

Othmane EL Metioui
Head of Data & AI

Confidential - 3

What we do

We generate value and growth for our clients by turning their digital marketing expenses into impactful and profitable
data-driven investments.

● 1st Party Data Collection
● Customer Journey design
● Omnichannel campaign management
● Clean Room management
● Incrementality & CLV

CRM & Loyalty Management

● Content builder
● Marketing Automation tool
● Messaging APIs
● Impactly

Numberly Martech Platform Digital Media

● Media Strategy
● Full funnel activation
● Data Collaboration & Retail Media
● Experimentation & measurement

Data Strategy & Insights

● Digital Consulting ● Insights & Analytics ● Numberly Academy● AI-driven solutions

Numberly the Marketing Technologist

● We are around since 2000, HQ in Paris France.

● 95% of Our Infrastructure is Self-Hosted on Bare Metal Servers

● We are our own Internet Service Provider.

● We commit to Open Source & Developer Community
○ Numberly Github, OSS financing, Europython Sponsor 11 years straight

● Self hosted Airflow users since 2017 - version 1.x

Numberly the Marketing Technologist

Airflow Key figures in Production:

● 1817 DAGs on 2 instances with 341 Datasets

● 16 500 daily DagRuns with 44 500 daily TaskInstances

WhoAmI

Who Am I ?

● Sébastien Crocquevieille

● Data Engineer @ Numberly

● French & Mexican

● Airflow user since 2018

● EuroPython 2023 Speaker
○ Orchestrating Python Workflows in Apache Airflow

● Pycon TW 2025 Speaker

You can call me SEB

https://www.ep2023.europython.eu/session/orchestrating-python-workflows-in-apache-airflow/

Events vs Assets
Scheduling

Disclaimer

External Events

It could be anything that happens outside Airflow

● Any message/post

● Any change in a value

● Any detectable action or signal

Event Driven Scheduling (Airflow 3.0)

Design :

● Execution that strictly follows external events

● Individual action based on payload ?

● 1 to 1 execution

In practice :

● A little complex to set up
○ AssetWatcher: monitors external event source via triggers

● Requires guarantees concerning:
○ Ensuring deliverability
○ Avoiding duplicate events
○ Ordering ??

Asset-Aware Scheduling (Airflow 2.4)

Design :

● Event that indicates a change in Data Source

● Data source changes are indistinguishable

Constraints:

● Similar to Event Driven but with lower constraints
○ 1 to 1 execution not guaranteed
○ Order of events shouldn’t be important

● No triggers needed, just Airflow Assets

Airflow (Data) Assets

● It is just a string → representing a Data Source

● Stored in Airflow DB

● Maintaining link is YOUR responsibility

● Generated by DAG parsing

Upscaling our
Scheduling

Airflow Scheduler

Performance issues

● Machine performance
○ High CPU and RAM usage
○ Scheduler heartbeat failures
○ dag_processing.total_parse_time is high

Performance issues

● Machine performance
○ High CPU and RAM usage
○ Scheduler heartbeat failures
○ dag_processing.total_parse_time is high

● Slow scheduling
○ Many tasks in “queued” or ”scheduled” state
○ Delayed DAG runs

Performance issues

● Machine performance
○ High CPU and RAM usage
○ Scheduler heartbeat failures
○ dag_processing.total_parse_time is high

● Slow scheduling
○ Many tasks in “queued” or ”scheduled” state
○ Delayed DAG runs

● Database limitations
○ Too many connections
○ Slow queries

Airflow Remote Executors

Airflow Remote Executors

Pros:
● Robust: decoupling workers from scheduler process
● Effective: Worker parallelization
● Available: Low latency workers always running

Airflow Remote Executors

Cons:
● Requires Infrastructure setup
● Can be Expensive: Cloud cost

Still having issues?

Scheduler Replication

Scheduler Replication

Pros:
● Split scheduling load
● More resilient
● Not much work

Cons:
● More Database operations

Need more ?

Separate Instances

Pros:
● Maximum scalability
● Separation of Concerns
● Better Access Control

Just have 2 Airflows

Separate Instances

Cons:
● Even more maintenance
● Even more resources
● Redundant operations

Just have 2 Airflows ?!

Assets
+

Multiple instances
=
…

Synchronizing Airflow
Assets

Our use case

● Airflow Migration 2.4 → 2.10 (latest version)

● Complete dependency overhaul (Python & Spark)

● Big dag library (~2000 DAGs)

● From old instance to new

● Upgrading code as we migrate

2.4

2.10

Our use case

● Migrating DAGs by batches based on
○ Complexity
○ Dependencies
○ Missing features
○ Urgency

● Specific needs:
○ Cross instance DAG Trigger
○ Cross instance Task sensor

● What about Airflow Assets? ⇒ Synchronization !

DAG batches
2.4 2.10

Push or Pull ?

Push

How do we start?

By getting the Asset Events!

Design choices

● Using Airflow API to get Asset Events
○ Filter by -timestamp & store the “offset” in Airflow Variables

Design choices

● Using Airflow API to get Asset Events
○ Filter by -timestamp & store the “offset” in Airflow Variables

● Push them to a Kafka topic ⇒ Single source of truth for all Asset Events

Almost Done !

Some 403 issues

● No POST endpoint for Dataset Events - Solved in 2.9
○ Dirty DB editor DAG

● Dataset Events POST doesn’t create NEW Datasets - “Solved” in 3.0 with Materialize EP
○ Make my own materialize DAG

=====> Conflict between parsed objects (Dataset) and created objects (Dataset Events)

● Datasets cannot be dynamically created - Solved in 2.10 with DatasetAlias
○ Go to latest version (at the time) 2.10

Design choices

● Using Airflow API to get Asset Events
○ Filter by -timestamp & store the “offset” in Airflow Variables

● Kafka topic ⇒ Single source of truth for all Asset Events

● Push back to Airflow through 3 different methods

Design

consumers

producers

2.4

2.10

2.10

DB editing DAG

POST DatasetEvent

DatasetAlias DAG

Design choices

● Using Airflow API to get Asset Events
○ Filter by -timestamp & store the “offset” in Airflow Variables

● Kafka topic ⇒ Single source of truth for all Asset Events

● Push back to Airflow through 3 different methods

● READ Assets Events before pushing to Airflow to ensure fresh & new

● Add a filter on Kafka feeding to avoid infinite loops

It works !

Or Pull ?

Pull Based Scheduling

● Airflow PULL from external instances directly

● Use Event based scheduling
○ Ignore the fact that we need another migration

● Poll Asset Events continuously to stay updated

Asset Watcher ⇒ Asset Event ⇒ DAG execution

Let’s code together

Using an Asset Watcher

Base Event Trigger

CLASS:

● Inherits from BaseEventTrigger

OBLIGATORY METHODS:

● serialize
○ Class path & arguments required for initialization must be serializable

● run
○ The actual trigger operation

● __init__

OPTIONAL METHODS:

● cleanup
● _set_context

Triggerer Process

Existing Event Triggers

Event Triggers:

● KAFKA: KafkaMessageQueueTrigger

● GENERIC MQ: MessageQueueTrigger

Base Triggers:

● REDIS: AwaitMessageTrigger

● GOOGLE: GCSBlobTrigger

● AWS: EC2StateSensorTrigger, S3KeyTrigger, …

Pull based scheduling

Caveats:

● “run” method is king
○ Error handling
○ Pagination
○ Authentication
○ No blocking
○ Not heavy

● Know where your Triggerers are running
○ Do you have one ?
○ Is it sharing scheduler resources ?

● Use cases outside message queues are “exploratory” if possible

So… can we pull ?

Using Pull ?

consumers

producers

Event Scheduling

Using Pull ?

consumers

producers

Event Scheduling ?

Cost of pulling

And without the queue?

● API request + Airflow Variable

● O(n^2) network calls

● Even More Airflow Activity

With the queue ?

● Constant triggerer polling
○ Less accurate than push
○ Or noisy

● Still need to push to queue
○ Keep dedicated service?
○ Use custom “high frequency” DAGs ?

So the choice is

I’m still on Airflow 2 !

Question time !

Bonus

