
Navigating Secure and
Cost-Efficient Flink Batch on
Kubernetes with Airflow

Yahoo! | Purshotam Shah & Prakash Nandha Mukunthan

Presentation
Agenda01

The Challenge: Batch
Processing

02

Flink Overview

03

Security Recommendations

04

Problem Use Cases

05

Airflow Integration

06

High Level
Architecture

07

End to End Flow

08

Security Challenges

09

Cost Optimization

The Challenge: Batch Processing for the Ad Team at Yahoo

Reduced Learning Curve
• Reuse existing Flink expertise to seamlessly extend into batch

processing.

Lower Operational Overhead
• One platform for streaming and batch simplifies operations and

reduces effort.

Cost Efficiency
• Scale resources on demand to run batch jobs more affordably.

Enterprise-Grade Security
• Built-in compliance with Yahooʼs data protection and security

standards.

Why Flink?

Unified Processing Engine
● One runtime for both streaming

and batch DataStream, Batch,

Table/SQL.

● Simplifies ETL + real-time pipelines

in a single framework.

Autoscaling & auto-tuning
Autoscaling: Flink on EKS automatically

scales TaskManagers up or down based

on workload needs.

Autotuning: It adjusts memory and task

settings on the fly to keep jobs efficient

and stable.

EKS Operator Ecosystem
The Flink Kubernetes Operator can

manage end-to-end lifecycle of Flink

applications, including submission,

upgrades, rollbacks, and savepoints.

Enhanced Resource Isolation
Better isolation for batch jobs with per-application Flink clusters.

Cloud-Native S3
IntegrationBatch pipelines on EKS work seamlessly with S3 without relying

on Hadoop.

The Solution Apache Flink & The Flink
Kubernetes Operator

Apache Flink: Stream & Batch
Processing
Flink is an open-source engine for stream and batch

processing, built for fast, reliable, and fault-tolerant

real-time analytics.

The Flink Kubernetes Operator
The operator streamlines running Flink on Kubernetes,

managing job lifecycles, handling autoscaling and

autotuning, performing rolling updates, and ensuring

recovery.

Security Recommendations

mTLS for Cluster Communication

Secure all Flink cluster communication

with Athenz mTLS, using certificates to

protect data and verify users and

services.

Secure Flink UI with Okta
Authentication
Secure Flink UI with Okta, allowing

access only to authorized users.

Centralized Secret Management
Keep Flink secrets, including keystore and

truststore passwords, in Yahooʼs

Managed Key Service for better security.

mTLS - External Communication
Outside the Cluster)
When an external client or service connects to Flink (e.g., submitting a job,

accessing the REST API, or metrics endpoint), it must present a client certificate.

1

Certificate Common Name CN Pattern
The certificateʼs Common Name CN) must match a pattern:

Regex applied to client certificate's CNcheck =

<Athenz-domain>:([0-9a-z_-]+).*

Example: finance:([0-9a-z_-]+).*

2
Security Assurances
• Only users with valid roles in the Athenz domain can connect.

mTLS  Internal Communication
Inside the Cluster)
Communication between Flink components JobManager ↔ TaskManager,

TaskManager ↔ TaskManager) also requires certificates.

Certificate Common Name CN Exact Match
Here, the CN must match exactly:

<Athenz-domain>.app-1

Example: finance.app-1

Security Assurances
• A rogue TaskManager or compromised pod cannot impersonate another

component.

Okta Integration for Flink UI Authentication: Flow
Add Okta Sidecar

Endpoint Exposure

Okta Token
Validation

Valid Token: Access Granted

Invalid Token: Access Denied

No Token: Redirect to Okta

Flink Deployment - Architecture

The Problem: Scaling Data
Ingestion
At Yahoo, we faced the critical challenge of processing massive

amounts of conversion data from a multitude of partners. This involved

ingesting and analyzing millions of records every single hour,

demanding a robust and highly scalable batch processing solution.

The Legacy Pains: Our Old Stack
Our existing Oozie + EMR  Pig stack was struggling to keep up with our evolving security and performance needs.

Old & Unreliable
Workflows
Oozie workflows were

XML-based, making them difficult

to write, maintain, and debug.

Inefficient Resource
Usage:
Persistent EMR clusters led to

significant costs from idle

compute resources.

Security and Compliance
Gaps:
Retrofitting modern security

standards like mTLS and granular

IAM was complex and unreliable.

Airflow to the Rescue

Apache Airflow
Enables workflow orchestration

with DAG scheduling, dependency

management, and monitoring for

data pipelines

FlinkKubernetesOperator
Custom Airflow operator for

declarative Flink job management

via Kubernetes integration.

Automated Lifecycle
Automates Flink cluster setup, job

execution, monitoring, and

cleanup—minimizing manual effort.

Result: From manual & error-prone → automated, scalable, reliable pipelines.

High Level Architecture

● Isolated compute per job ● Strict access control ● No hardcoded credentials ● Observability

End Flow to End Flow

Security Model Challenges
1 EKS Athenz Integration

No IAM support, requires custom cert management.

2 MWAA Athenz Gap
No native Athenz integration for cert fetch/refresh.

3 IAM Bridge Solution
MWAAEKS via IAM, Flink internal via Athenz.

4 Monitoring Workaround
MWAA monitors via Flink CRDs using EKS IAM.

Hybrid model ensures Yahoo-compliance + AWS integration.

Cost Controls: How We
Achieve Efficiency

Immediate Cleanup
Cleanup Flink clusters and Kubernetes operators immediately upon job

completion - no lingering resources consuming costs.

Per-Job Isolation
Each job gets its own dedicated cluster, ensuring optimal resource

allocation and preventing resource contention between different

workloads.

Automated Lifecycle
Full automation eliminates manual intervention, reducing operational

overhead and ensuring consistent resource management practices.

Production Health Monitoring -
Production Engineering DAG

Why Monitor the Monitors?

• Data pipelines are only as reliable as their orchestration

• Failed DAGs = missed SLAs and data gaps

• Proactive monitoring prevents reactive firefighting

PE Production Engineering) DAG Our Watchdog

• Runs every 5 minutes - continuous health checks

• Queries all application DAGs for failure states

• Publishes metrics to CloudWatch - FailedDagCount per DAG

• Triggers Chronosphere alerts - immediate notification to on-call teams

Takeaways

Airflow + EKS  Flink Operator = strong pattern for

secure batch.

Simple deployment

Simplified idle flink cluster removal Per‑job clusters reduce cost and improve isolation.

Security must be baked into orchestration, not added

later.

Observability and cleanup are not optional.

Reference
Flink Kubernetes Operator: https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/

MWAA Best Practices: https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices.html

Questions?

Connect with us:

purushah@yahooinc.com

prakashnm@yahooinc.com

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices.html
mailto:purushah@yahooinc.com

