AIRFLOW.
SUMMIT

Navigating Secure and
Cost-Efficient Flink Batch on
Kubernetes with Airflow

Presentation
Agenda

02

03

The Challenge: Batch

Flink Overview

Security Recommendations

Processing

04 05 06

Problem Use Cases Airflow Integration High Level
Architecture

07 08 09

End to End Flow Security Challenges Cost Optimization

The Challenge: Batch Processing for the Ad Team at Yahoo

Reduced Learning Curve Lower Operational Overhead

e Reuse existing Flink expertise to seamlessly extend into batch e One platform for streaming and batch simplifies operations and
processing. reduces effort.

Cost Efficiency Enterprise-Grade Security

e Scale resources on demand to run batch jobs more affordably. e Built-in compliance with Yahoo's data protection and security

standards.

Why Flink?

—— —0— —0—

Unified Processing Engine Autoscaling & auto-tuning
e One runtime for both streaming Autoscaling: Flink on EKS automatically
and batch (DataStream, Batch, scales TaskManagers up or down based
Table/SQL). on workload needs.

e Simplifies ETL + real-time pipelines
Autotuning: It adjusts memory and task
in a single framework.
settings on the fly to keep jobs efficient

and stable.

EKS Operator Ecosystem
The Flink Kubernetes Operator can
manage end-to-end lifecycle of Flink
applications, including submission,

upgrades, rollbacks, and savepoints.

e) e ——— | e

Enhanced Resource Isolation Cloud-Native S3

Better isolation for batch jobs with per-application Flink clusters. hatagmtailons on EKS work seamlessly with S3 without relying

on Hadoop.

The Solution Apache Flink & The Flink
Kubernetes Operator

Apache Flink: Stream & Batch The Flink Kubernetes Operator
PrOCeSSing The operator streamlines running Flink on Kubernetes,
Flink is an open-source engine for stream and batch managing job lifecycles, handling autoscaling and
processing, built for fast, reliable, and fault-tolerant autotuning, performing rolling updates, and ensuring

real-time analytics. recovery.

Security Recommendations

AWNENZ FOlLy cngine
(& Certificate Authority)
@ Service
'> @ @ Certificates

JoB

Mutual
©
% Authenfication

Communication

e

Service
MANAGER MANAGER / Encrypted
Authortization
User Authantication @@ Finta & Streams

& Auhorization
5 User
Are o’ Authonization

MTLS for Cluster Communication

Secure all Flink cluster communication
with Athenz mTLS, using certificates to
protect data and verify users and

services.

g Apache Flink Cluster OKTA

(Tf JobManager Identity Cloud

[User Access ‘

Authenticati

\(Webber

Secure Access via Okta

o0
S/TI'S Secure CO\’\“e("“o

Secure Flink Ul with Okta

Authentication
Secure Flink Ul with Okta, allowing

{ Web Browser ‘

access only to authorized users.

Apache Flink
Cluster

ecure Configuration Acc
o o» Task |
Ll Manager Manager

~ External Services
redential Retrieval > (e-g. Kafka, 53)

g @

v

co
B 3 Q
Admin & Audit Interface o4

Role-Rabed Access Control
Control & Auditing

Centralized Secret Management
Keep Flink secrets, including keystore and
truststore passwords, in Yahoo's

Managed Key Service for better security.

MTLS - External Communication
(Outside the Cluster)

When an external client or service connects to Flink (e.g., submitting a job,

accessing the REST API, or metrics endpoint), it must present a client certificate.

Certificate Common Name (CN) Pattern

The certificate’s Common Name (CN) must match a pattern:

PO001001010110
01001100101 /

| 1 # Regex applied to client certificate's CNcheck =

| <Athenz-domain>:([0-9a-z_-]+).*
010100100111
00110101010

p010101000011 Example: finance: ([0-9a-z_-]+).*

1
\\rnom 1110101 - /

Security Assurances

e Only users with valid roles in the Athenz domain can connect.

MTLS - Internal Communication
(Inside the Cluster)

Communication between Flink components (JobManager <> TaskManager,

TaskManager <> TaskManager) also requires certificates.

Certificate Common Name (CN) Exact Match

Here, the CN must match exactly:
<Athenz-domain>.app-1

Example: finance.app-1

Security Assurances

» Arogue TaskManager or compromised pod cannot impersonate another

component.

Okta Integration for Flink Ul Authentication: Flow

Add Okta Sidecar Okta Token Invalid Token: Access Denied

\/alidatinn

-y

Endpoint Exposure Valid Token: Access Granted No Token: Redirect to Okta

OKTA

Redirecting...
Please wait while we redirect you
Continue to application

Flink Deployment - Architecture

<7 308 SUBMISSION
1. Submits
FlinkDeploymen
t CRD via
Kubernetes API

Jenkins
(:) 1. Submits
'on \ FlinkDeploymen
t CRD via
User Kubernetes API

\

—3&3

=/

AHAZON EKS CLUSTER

Flink K8s
Operator

2, Creates &
Manages Flink R

Pods

-
© FLINK PODS

o
— JOBMANAGER POD

e

Athenz mTLS
Sidecar

<

Okta SSO
Sidecar

i

> EXTERNAL SERVICES

Provides mTLS

(Certificates | GH S ‘ ’

(—_Co

——————

mTLS
Encrypted
mmunication

o |
¢ TASKMANAGER POD

0=

Athenz mTLS
Sidecar

e/

Athenz
Provides mTLS Ident}ty
Certificates Service
\ Sends
Metrics | |
Observabili
Sends ty
(Metrics (Grafana/Ch
ronosphere)
Authenticates Retrieves Okta
UI Access Secret > Oé
Okta SSO CKMS

(Secrets
Mgmt)

The Problem: Scaling Data
Ingestion

At Yahoo, we faced the critical challenge of processing massive
amounts of conversion data from a multitude of partners. This involved
ingesting and analyzing millions of records every single hour,

demanding a robust and highly scalable batch processing solution.

The Legacy Pains: Our Old Stack

Our existing Oozie + EMR + Pig stack was struggling to keep up with our evolving security and performance needs.

Old & Unreliable Inefficient Resource Security and Compliance
Workflows Usage: Gaps:

Oozie workflows were Persistent EMR clusters led to Retrofitting modern security
XML-based, making them difficult significant costs from idle standards like mTLS and granular

to write, maintain, and debug. compute resources. IAM was complex and unreliable.

Airflow to the Rescue

Apache Airflow FlinkKubernetesOperator Automated Lifecycle

Enables workflow orchestration Custom Airflow operator for Automates Flink cluster setup, job
with DAG scheduling, dependency declarative Flink job management execution, monitoring, and
management, and monitoring for via Kubernetes integration. cleanup—minimizing manual effort.

data pipelines

Result: From manual & error-prone - automated, scalable, reliable pipelines.

High Level Architecture

s

B ArFLOW (Mwaa)

-

Sensor
Monitors CR

[exs cLUSTER

Aivflov_v\

J -

-

Flink K8s
operator
manages
jobs, scales
job, updates
status

Poll Every 6@

=

S3 Buckets
for Data +
Configs

(~ ™
D SECURITY &
OBSERVABILITY

OTEL
Metrics/Logs
Sideocar

Seconds

FlinkKubernet
esOperator
Submits CR

J

~
JobManager
_
>[]—ﬂ
P [
TaskManagsr
\ Per-Job
Resources
Per-Job @
Update Status Resources
: I ’ FlinkDeploym
ent Job Spec
+ Status

O,

Submit

FlinkDeploym
ent CR

e

Athenz mTLS
Sidecar

(
CloudWatch
Metrics

Isolated compute per job °

Strict access control °

No hardcoded credentials

A=

IAM/STS EKS
Access

Observability

End Flow to End Flow

Gég > >®%@:{—>@:_wy—s

DAG Trigger wm for lnpm Clean Output Update EKS Copy Copy OTEL
Path Kubeconfig FlinkDeploym
ent YAML S —> @
Apply—
OTEL
/H
-\ » CaonfigMap
Final Cleanup I l—
Fi kD ploym —
FlinkDe,
Submn FII f ant glnovm

Security Model Challenges

1 EKS Athenz Integration

No IAM support, requires custom cert management.

3 IAM Bridge Solution
MWAA<>EKS via IAM, Flink internal via Athenz.

Hybrid model ensures Yahoo-compliance + AWS integration.

2 MWAA Athenz Gap

No native Athenz integration for cert fetch/refresh.

4 Monitoring Workaround
MWAA monitors via Flink CRDs using EKS [AM.

Cost Controls: How We
Achieve Efficiency

&(Immediate Cleanup

Cleanup Flink clusters and Kubernetes operators immediately upon job

completion - no lingering resources consuming costs.

Per-Job Isolation

Each job gets its own dedicated cluster, ensuring optimal resource

allocation and preventing resource contention between different

workloads.

%A Automated Lifecycle

Full automation eliminates manual intervention, reducing operational

overhead and ensuring consistent resource management practices.

o

Production Health Monitoring -
Production Engineering DAG

Why Monitor the Monitors?

o Data pipelines are only as reliable as their orchestration
e Failed DAGs = missed SLAs and data gaps

e Proactive monitoring prevents reactive firefighting

PE (Production Engineering) DAG: Our Watchdog

e Runs every 5 minutes - continuous health checks
e Queries all application DAGs for failure states
e Publishes metrics to CloudWatch - FailedDagCount per DAG

e Triggers Chronosphere alerts - immediate notification to on-call teams

Takeaways

Airflow + EKS + Flink Operator = strong pattern for Simple deployment

secure batch.

Simplified idle flink cluster removal Per-job clusters reduce cost and improve isolation.

Security must be baked into orchestration, not added Observability and cleanup are not optional.

later.

Reference

Flink Kubernetes Operator: https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/

MWAA Best Practices: https://docs.aws.amazon.com/mwaa/latest/userquide/best-practices.html

Questions?

Connect with us:

purushah@yahooinc.com

prakashnm@yahooinc.com

https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/
https://docs.aws.amazon.com/mwaa/latest/userguide/best-practices.html
mailto:purushah@yahooinc.com

