
Purple is the
New Green

Ethan Shalev

Harnessing Deferrable Operators to
Improve Performance & Reduce Costs

Purple is the
New Green

Ethan Shalev

Harnessing Deferrable Operators to
Improve Performance & Reduce Costs

 Blue
Blue 1.

● Data Engineer @ Wix

● Airflow tech-lead & evangelist

● 20+ years in the field of data

/in/eshalev

Ethan Shalev

https://www.linkedin.com/in/eshalev

Agenda
About Wix1

Motivation for using deferrable operators2

Explanation of deferrable operators and their design3

Implementation approach and impact4

Pitfalls, lessons learned and next steps5

About Wix Motivation Deferral explained Implementation Next Steps

About Wix
1.

About Wix Motivation Deferral explained Implementation Next Steps

About Wix
● The leading SaaS website builder platform

● Runs ~4% of all active sites on the WWW1

● Drives ~40% of traffic to sites created with simple website builders2

https://w3techs.com/technologies/details/cm-wix
https://trends.builtwith.com/cms/simple-website-builder/traffic/Entire-Internet

About Wix Motivation Deferral explained Implementation Next Steps

Data @ Wix

● 75 Data Scientists

● 120 Data Engineers

● 240 Business Analysts

● 3 Production Airflow clusters

○ Migrating from 2.6.3 >> 3.1

● 7,500 DAGs

● 270,000 Daily Airflow tasks

● 10,000+ worker hours per day
● 20TB of data added and

processed daily

● 1.2M SQL Queries per day

People

Data

Airflow

About Wix Motivation Deferral explained Implementation Next Steps

Motivation
2
.

Reduce data-delivery
bottlenecks

About Wix Motivation Deferral explained Implementation Next Steps

Reduce Airflow
Worker load

Free-up
resources

Reduce
costs

Motivation

About Wix Motivation Deferral explained Implementation Next Steps

Airflow Sensors?

Exploration

Just increase resources?

About Wix Motivation Deferral explained Implementation Next Steps

Deferrable operators!

Solution

About Wix Motivation Deferral explained Implementation Next Steps

Deferral explained
3.

About Wix Motivation Deferral explained Implementation Next Steps

De·fer (/dəˈfər/):

● To postpone or delay

● To yield to another

About Wix Motivation Deferral explained Implementation Next Steps

Deferrable Operators
Transfer the
management of a
task from a
worker to a
triggerer service
while an external
process is
executing

Standalone process,
capable of handling
1,000+ asynchronous
triggers

Frees up Airflow
worker slot;
increases Airflow
availability

Deferral is
defined at the
operator level,
invoked either
by default or
per-task.

About Wix Motivation Deferral explained Implementation Next Steps

Typical execution vs. deferred execution
Triggerer

In-process
API server

Triggers

Airflow
Metadata
Database

Dag
Processors(s)

Worker(s)

In-process
API server

API server

Core app

Execution app

Scheduler

Executor

Dag code

About Wix Motivation Deferral explained Implementation Next Steps

Typical execution vs. deferred execution
No deferral:
class MyShinyOperator(BaseOperator):

 def execute(self, context: Context):
 result = call_external(context)
 # connection open, waiting...

 return result if self.do_xcom_push

class MyShinyOperator(BaseOperator):

 def execute(self, context: Context):
 request_id = call_external(context)
 while True:
 result = poll_external(request_id)
 if result:
 return result if self.do_xcom_push
 else:
 sleep(30)

About Wix Motivation Deferral explained Implementation Next Steps

class MyShinyOperator(BaseOperator):

 def execute(self, context: Context):
 request_id = call_external(context)

 self.defer(trigger=MyShinyTrigger(request_id),
 method_name="all_shiny",
 kwargs=context, #optional
 timeout=timedelta(minutes=15) #optional
)

 def all_shiny(context)
 return context.result if self.do_xcom_push

Typical execution vs. deferred execution
Deferral:

import asyncio

from airflow.triggers.base import BaseTrigger, TriggerEvent
from airflow.utils import timezone

class DateTimeTrigger(BaseTrigger):
 def __init__(self, moment):
 super().__init__()
 self.moment = moment

 def serialize(self):
 return (
"airflow.providers.standard.triggers.temporal.DateTimeTrigger",
 {"moment": self.moment}
)

 async def run(self):
 while self.moment > timezone.utcnow():
 await asyncio.sleep(1)
 yield TriggerEvent(self.moment)

GitHub

What makes
a trigger?

About Wix Motivation Deferral explained Implementation Next Steps

https://airflow.apache.org/docs/apache-airflow/2.6.3/core-concepts/overview.html
https://github.com/apache/airflow/blob/eaf17723c19cd4b1d3f7ae110d3b3d16fd66cd81/airflow-core/src/airflow/triggers/base.py#L52

Task deferred to trigger,
worker slot freed up

Task
collected by
scheduler

Task assigned to worker, running

External process executing

Task
added to
queue

Task
completed

Submit work to
external service

(EKS/ Spark/ Etc.)

External process executing

Process exit 0

Task
collected by
scheduler

Task
assigned
to worker

Task
added to
queue

Task
completed

About Wix Motivation Deferral explained Implementation Next Steps

Process exit 0

Typical execution vs. deferred execution

Submit work to
external service

(EKS/ Spark/ Etc.)

About Wix Motivation Deferral explained Implementation Next Steps

Applying deferral in your DAG

from airflow import DAG
from myOperators.shiny import MyShinyOperator
from datetime import datetime

with DAG(
 dag_id="deferrable_dag_demo",
 start_date=datetime(2025, 10, 8),
 schedule=None
):
 MyShinyOperator(
 task_id="so_shiny",
 shiny_params=params,

)

from airflow import DAG
from myOperators.shiny import MyShinyOperator
from datetime import datetime

with DAG(
 dag_id="deferrable_dag_demo",
 start_date=datetime(2025, 10, 8),
 schedule=None
):
 MyShinyOperator(
 task_id="so_shiny",
 shiny_params=params,
 deferrable=True
)

About Wix Motivation Deferral explained Implementation Next Steps

Implementation
4.

About Wix Motivation Deferral explained Implementation Next Steps

 Query Airflow
metadata DB

 Map Operator-types by
average task duration and
count

 Identify
quick-wins

Long average run
time

Approach

 ,
Lots of them

SELECT
Operator,
Sum(duration) AS duration_seconds,
Count(1) AS operator_count

FROM
airflow_db..task_instance

WHERE
state = 'success'
AND start_date > date'2025-08-01'
AND start_date < date'2025-09-01'

GROUP BY 2;

Custom TrinoOperators
Spark on EKS
Custom KubernetesPod Operators
Custom Great-Expectations (GX) Operators
Data-transfer Operators

 (Snowflake to Iceberg to BQ…)
Data-freshness sensors
Slack Operator
OpsGenie Operator
PythonOperator(s)

About Wix Motivation Deferral explained Implementation Next Steps

Findings
100+ distinct types of operators

Complex

 Long time to delivery

 Chance of failure too high

About Wix Motivation Deferral explained Implementation Next Steps

Where do you start?

?

?
Create MVP

Communicate the feature

Encourage adoption

Recruit support and get others involved

Use momentum to continue

Start where it’s easy!

Great Expectations docs

GxOperator as a POC

About Wix Motivation Deferral explained Implementation Next Steps

https://legacy.017.docs.greatexpectations.io/docs/
https://airflow.apache.org/docs/apache-airflow/2.6.3/core-concepts/overview.html

Load
expectations

config

Wait 30
seconds

Endpoint
returned
results?

No

YesReturn results,
end

Submit to
Serverless GX

Poll GX
endpoint

GxOperator as a POC

About Wix Motivation Deferral explained Implementation Next Steps

● Examine Execute() method
● Identify where external polling is done
● Replace it with trigger call
● Implement asynchronous trigger

 retry_call(self.create_expectation, fargs=(context,), tries=self.create_expectation_config.tries,
 delay=self.create_expectation_config.delay_in_seconds)

 retry_call(self.get_expectation_results, tries=self.get_expectation_config.tries,
 delay=self.get_expectation_config.delay_in_seconds, exceptions=(ValueError,))

 retry_call(self.create_expectation, fargs=(context,), tries=self.create_expectation_config.tries,
 delay=self.create_expectation_config.delay_in_seconds)
if self.deferrable:

else:
 retry_call(self.get_expectation_results, tries=self.get_expectation_config.tries,
 delay=self.get_expectation_config.delay_in_seconds, exceptions=(ValueError,))

 self.defer(trigger=GxTrigger(self.run_guid),
method_name="process_expectation_results_returned_from_trigger")

Refactoring GxOperator

About Wix Motivation Deferral explained Implementation Next Steps

async def run(self):
 await asyncio.sleep(self.initial_wait_delay)
 session = requests.Session()
 response = session.get(self.endpoint, params={"run_guid": self.run_guid})

 while not "success" in json.loads(response.text):
 await asyncio.sleep(self.wait_delay)
 response = session.get(self.endpoint, params={"run_guid": self.run_guid})
 yield TriggerEvent({"run_guid": self.run_guid, "response": json.loads(response.text)})

GxTrigger

About Wix Motivation Deferral explained Implementation Next Steps

Demo

About Wix Motivation Deferral explained Implementation Next Steps

https://docs.google.com/file/d/1F_dob-a-B6plvOU5foTzWFRIh65aPLoz/preview

About Wix Motivation Deferral explained Implementation Next Steps

Next Steps
5.

Rollout

About Wix Motivation Deferral explained Implementation Next Steps

Test
locally

Deploy
on select
DAGs

Monitor

Communicate

Track
adoption

Scale
triggerer

Set deferral
by default

About Wix Motivation Deferral explained Implementation Next Steps

Pitfalls

Ensure
gradual
rollout

Track
Triggerer
process

performance

Don’t start
by deferring
a DAG with
1,000 tasks

Scale up
as

needed Track # of
concurrent

deferred
tasks

All at
once

On a
weekend

Next steps

About Wix Motivation Deferral explained Implementation Next Steps

TrinoOperators
(SqlOperator)

Migrate custom
PythonOperators
to deferrables

Custom
SparkOperators

Defer natively
deferrable
operators
(Amazon, etc.)

Expected Impact

About Wix Motivation Deferral explained Implementation Next Steps

Operator

GxOperator

SparkOperators

TrinoOperators

Worker
Hr/Day saved

450 (4.5%)

2,000 (20%)

4,000 (40%)

Cost savings
$/Month

$600

$3,200

$6,400

CO₂ Emissions
reduced
(Estimate)

0.6 tCO₂/ Year

3 tCO₂/ Year

6 tCO₂/ Year

Conclusions

About Wix Motivation Deferral explained Implementation Next Steps

Deferrable operators
improve performance
& reduce costs

Easier than they seem
at first glance

Do it!

Thank you!

Questions?

/in/eshalev

eitansh@wix.com

