Run Airflow tasks on your coffee
machine &

Cedrik Neumann

ASTRONDMER

| don’t have a
coffee machine
here today ...

ASTRONODMER

Meet the Espressif ESP32-C3-MINI-1SoC

e CPU: single core 32-bit RISC-V
e Frequency: 160 MHz

e Embedded flash: 4 MB

e RAM: 400 KB

Q2E=3F '50)
e Power:0.33 W pe -ﬁ — i, g

e You canrun Doom on similar hardware*

e Butdoesitrun Airflow?

* Dual core ESP-32 with 4 MB PSRAM: https://qgithub.com/espressif/esp32-doom ASTRONJOMER

https://github.com/espressif/esp32-doom

e A worker written in Rust
e Dags and tasks written in Rust
e Fully asynchronous

e Compiled to run on bare metal

ASTRONODMER

Two major Airflow 3 features made this
possible:

Why now? e Task SDK (AIP-72)
: Interface for the interaction between tasks
and Airflow as a HTTP API

e Edge Executor (AIP-69)
Pull task execution information from the
Executor viaa HTTP API

ASTRONDMER

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-72+Task+Execution+Interface+aka+Task+SDK
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=301795932

A little bit of background

Airflow 2's security model:

ASTRONODMER

Airflow 2 architecture

— =
=

Executor specific \§ J

Metadata DB

Scope
ASTRONODMER

Airflow 3 w/ edge executor architecture

—

/ HTTP

\

\f
.

Scope
* In-process API server ASTRONJOMER

Metadata DB

\

J

Edge Worker
Basics

Things you should know

ASTRONODMER

Highlights of the edge API

Worker Register: Initial
registration of worker. Fails if
version mismatch.

Worker Set State: Used fo
Heartbeat and state transitions
(requested from either side).

Jobs Fetch: Fetch a job to
execute on the edge worker.

API docs are hosted at for example: http://localhost:8080/edge_worker/docs

Jobs Set State: Update the state
of a job running on the edge
worker. Not the same as Tl state.

Logs Push: Send logs back to the
Airflow deployment. Should be
sequential.

ASTRONODMER

http://localhost:8080/edge_worker/docs

Anatomy of an edge worker (Python)

ASTRONODMER

Anatomy of an edge worker (async Rust)

ASTRONODMER

Rust Task SDK

Write Airflow tasks natively in Rust

ASTRONODMER

The Operator trait

e Implement your operator using the execute method

e Output must be JSON serializable (serde: :Serialize) or ()

pub trait Operator<R: TaskRuntime> {

type Output: JsonSerialize;

async fn execute<'t> (&'t mut self, ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError>;

ASTRONODMER

Store output in XCom

use airflow task sdk::prelude::*;

use tracing::info;

[derive(Debug, Clone, Default)]

pub struct ButtonSensor;

impl<R: TaskRuntime> Operator<R> for ButtonSensor {

type Output = Button;

async fn execute<'t> (&'t mut self, ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError> ({
info! ("Waiting for button press...'";
let button = next button pressed() .await;
info! ("Button {:?} pressed", button);

Ok (button)

ASTRONODMER

Downstream XCom pull

[derive(Debug, Clone, Default)]

pub struct LedOperator;

impl<R: TaskRuntime> Operator<R> for LedOperator {

type Output = ()

async fn execute<'t> (&'t mut self, ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError> {
let button: Button = ctx.task instance() .xcom pull().task id("wait button").one().await?;
info! ("Got button {:?} from upstream task", button);

// TODO do something with the button

Ok (())

ASTRONODMER

Limitations

Not yet implemented:

Variables & connections

Full task context

Assets

Sensors

Just build your DagBag and run a worker

This needs some thinking:

e Template rendering
e Dynamic task mapping
e Dag versioning

ASTRONODMER

Rust when | have
| an atom of
. difference between
| my type and the
expected type

Python vs Rust

Python when |
cast a float
into an
unsigned Toyota
Yaris 2023

ASTRONODMER

Learnings from rebuilding Airflow in Rust

Python
e Your task just runs something with an execute method
e Convenient globals for access to XCom, Variables, Connections
e Heavy use of inheritance
e Breaking changes often only show up at runtime

Rust

Ownership impacts how you construct your task perform mutations
The type system is a safety net while refactoring

Tight control over what your users can access

Need to work around the non-existence of inheritance

Generics can blow up your type definitions (dyn doesn't like async)

ASTRONODMER

e Resource constrained devices
e Specialized hardware

. e EXxotic operating systems
Potential use

cases
Examples:

e Automotive industry
e Household appliances

e Consumer electronics

ASTRONDMER

The Future of the Task SDK?

e Dag definition interface
For now a Python Dag must exists in order for it to exist in Airflow. Can we
call/execute something which returns back some kind of serialized Dag
representation?

e Plugable supervisor
Use an existing Python worker to run a non-Python task natively or the other way
around.

e Unified task logs API
Local paths, remote log storage, edge API ... the way tasks report their logs
should not depend on the Airflow setup/configuration.

ASTRONODMER

Demo time!

Edge Worker Edge Jobs

Worker Name State

airflow-esp m

Assets

@

Browse

Security

Queues

(all queues)

First Online

5 days ago

Last Heartbeat

1 second ago

Active Jobs

System Information

airflow_version: 3.1.0
edge_provider_version: 1.3.1
concurrency: 1
free_concurrency: 1

s m——— .
a3 3 commm———- o o
s E Ny WNEmS YL o

RSV — o B " O e et e e e e e s

Operations

Airflow

2026-10-08 20336218
Ldle
Slelst 01

ASTRONDMER

Interested in embedded Rust?

Take a look at the The Rusty Bits YouTube channel.

ESP32 embedded Rust setup explained

o
| o | S

/
] .
-h/;_ ~
il

EMBASSY, |
FRAMEWORK ' ! ~

. r g

Intro to Embassy

ASTRONODMER

https://www.youtube.com/@therustybits
http://www.youtube.com/watch?v=dxgufYRcNDg
http://www.youtube.com/watch?v=pDd5mXBF4tY

Thank you

Airflow Rust SDK
Task SDK and Edge Executor written in Rust

https://qithub.com/m1lracoli/airflow-rs

The 2025 Apache
Airflow® Survey

Airflow on ESP
Edge worker running on an ESP32-C3

https://qithub.com/m1lracoli/airflow-esp/tree/airflow-summit-2025

ASTRONODMER

https://github.com/m1racoli/airflow-rs
https://github.com/m1racoli/airflow-esp/tree/airflow-summit-2025

