
Run Airflow tasks on your coffee
machine ☕

Cedrik Neumann

I don’t have a
coffee machine
here today …

Meet the Espressif ESP32-C3-MINI-1 SoC

● CPU: single core 32-bit RISCV

● Frequency: 160 MHz

● Embedded flash: 4 MB

● RAM 400 KB

● Power: 0.33 W

● You can run Doom on similar hardware*

* Dual core ESP32 with 4 MB PSRAM https://github.com/espressif/esp32-doom

● But does it run Airflow?

https://github.com/espressif/esp32-doom

Yes, it can run Airflow tasks (Sep 2025)

YES!
● A worker written in Rust

● Dags and tasks written in Rust

● Fully asynchronous

● Compiled to run on bare metal

Why now?

Two major Airflow 3 features made this
possible:

● Task SDK (AIP72)
Interface for the interaction between tasks
and Airflow as a HTTP API

● Edge Executor (AIP69)
Pull task execution information from the
Executor via a HTTP API

https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-72+Task+Execution+Interface+aka+Task+SDK
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=301795932

A little bit of background

Airflow 2ʼs security model:

Airflow 2 architecture

Metadata DB

Scheduler

Web server

Worker

Executor

Triggerer

Dag processor
User code ⚠ User code ⚠

User code ⚠

User code ⚠

Executor specific 󰤃

Scope

Airflow 3 w/ edge executor architecture

Metadata DB
Scheduler

API server

Worker
Executor

Triggerer*

Dag processor*
User code

User code

User code

* In-process API server

HTTP

HTTP

HTTP

Scope

Edge Worker
Basics
Things you should know

Highlights of the edge API

Worker Register: Initial
registration of worker. Fails if
version mismatch.

Worker Set State: Used fo
Heartbeat and state transitions
(requested from either side).

Jobs Fetch: Fetch a job to
execute on the edge worker.

API docs are hosted at for example: http://localhost:8080/edge_worker/docs

Jobs Set State: Update the state
of a job running on the edge
worker. Not the same as TI state.

Logs Push: Send logs back to the
Airflow deployment. Should be
sequential.

http://localhost:8080/edge_worker/docs

Anatomy of an edge worker (Python)

Worker process

● Interaction with
edge API

● Management of task
jobs

● Upload of task logs

Edge API

Supervisor process

● Interaction with
execution API

● Supervise task
runner process

● Task heartbeat

Execution API

Task runner process

● Run the task
● Communicate with

supervisor
● All logs are task logs

stdin/stdout

Task runner

● Run the task
● Communicate with

supervisor
● All logs are task logs

Worker

● Interaction with
executor

● Execution of task
supervisors

● Upload of task logs

Anatomy of an edge worker (async Rust)

Edge API

Supervisor

● Interaction with
execution API

● Supervise task
runner process

● Task heartbeat

Execution API

channel

Rust Task SDK
Write Airflow tasks natively in Rust

The Operator trait

pub trait Operator<R: TaskRuntime> {

 type Output: JsonSerialize;

 async fn execute<'t>(&'t mut self, ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError>;

}

● Implement your operator using the execute method

● Output must be JSON serializable (serde::Serialize) or ()

Store output in XCom
use airflow_task_sdk::prelude::*;

use tracing::info;

#[derive(Debug, Clone, Default)]

pub struct ButtonSensor;

impl<R: TaskRuntime> Operator<R> for ButtonSensor {

 type Output = Button;

 async fn execute<'t>(&'t mut self, _ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError> {

 info!("Waiting for button press...");

 let button = next_button_pressed().await;

 info!("Button {:?} pressed", button);

 Ok(button)

 }

}

Downstream XCom pull
#[derive(Debug, Clone, Default)]

pub struct LedOperator;

impl<R: TaskRuntime> Operator<R> for LedOperator {

 type Output = ();

 async fn execute<'t>(&'t mut self, ctx: &'t Context<'t, R>) -> Result<Self::Output, TaskError> {

 let button: Button = ctx.task_instance().xcom_pull().task_id("wait_button").one().await?;

 info!("Got button {:?} from upstream task", button);

 // TODO do something with the button

 Ok(())

 }

}

Limitations

Not yet implemented:

● Variables & connections
● Full task context
● Assets
● Sensors
● Just build your DagBag and run a worker

This needs some thinking:

● Template rendering
● Dynamic task mapping
● Dag versioning

Python vs Rust

Learnings from rebuilding Airflow in Rust

Python

● Your task just runs something with an execute method
● Convenient globals for access to XCom, Variables, Connections
● Heavy use of inheritance
● Breaking changes often only show up at runtime

Rust

● Ownership impacts how you construct your task perform mutations
● The type system is a safety net while refactoring
● Tight control over what your users can access
● Need to work around the non-existence of inheritance
● Generics can blow up your type definitions (dyn doesnʼt like async)

Potential use
cases

● Resource constrained devices

● Specialized hardware

● Exotic operating systems

Examples:

● Automotive industry

● Household appliances

● Consumer electronics

The Future of the Task SDK?

● Dag definition interface
For now a Python Dag must exists in order for it to exist in Airflow. Can we
call/execute something which returns back some kind of serialized Dag
representation?

● Plugable supervisor
Use an existing Python worker to run a non-Python task natively or the other way
around.

● Unified task logs API
Local paths, remote log storage, edge API … the way tasks report their logs
should not depend on the Airflow setup/configuration.

Demo time!

Interested in embedded Rust?

Take a look at the The Rusty Bits YouTube channel.

ESP32 embedded Rust setup explained

Intro to Embassy

https://www.youtube.com/@therustybits
http://www.youtube.com/watch?v=dxgufYRcNDg
http://www.youtube.com/watch?v=pDd5mXBF4tY

Thank you

Airflow Rust SDK

Task SDK and Edge Executor written in Rust

https://github.com/m1racoli/airflow-rs

Airflow on ESP

Edge worker running on an ESP32C3

https://github.com/m1racoli/airflow-esp/tree/airflow-summit-2025

The 2025 Apache
Airflow® Survey

https://github.com/m1racoli/airflow-rs
https://github.com/m1racoli/airflow-esp/tree/airflow-summit-2025

