AIRFLOW.
SUMMIT

Airflow at OpenAl

Ping Zhang & Hongyi Wang

AIRFLOW.
Agenda SUMMIT

e Airflow Journey at OpenAl
e Challenges

e Reliability

e Scaling

e Tooling

e Future work

From Expectation to Reality él&ﬁlﬁ)ﬁ

Early Days at OpenAl AIRPLOW

e 20 engineers on the data platform team
e No dedicated Airflow team, limited engineering bandwidth
e Each team used its own orchestration: Dagster, notebooks, scripts

e This flexibility helped early on, but made production harder

EARLY 2023

—

Fragmented
Orchestration Era
(Dagster,
Notebook, etc.)

The Shift to Airflow AIRFLOW.
SUMMIT

e We made a deliberate shift: unify on Airflow as the backbone

e Moved DAGs into the monorepo, tied task logic to orchestration
e Adopted software best practices: review, test, deploy together
e This gave us a consistent, flexible foundation to scale

e Set the stage for solving reliability, scaling, and usability

MID 2023 JAN 2024 FEB 2024 MAY 2024 JUNE 2024
\ 4 v v A 4 v
First Airflow First Spark job First DBT job scheduled Azure Data Factory Dagster deprecated

cluster launched scheduled via Airflow deprecated

The Shift to Airflow AIRFLOW.
SUMMIT

e We made a deliberate shift: unify on Airflow as the backbone

e Moved DAGs into the monorepo, tied task logic to orchestration
e Adopted software best practices: review, test, deploy together
e This gave us a consistent, flexible foundation to scale

e Set the stage for solving reliability, scaling, and usability

AUG 2024 H1 2025 AUG 2025 SEP 2025 TODAY
v A 4 \ 4 v \ 4
T‘;‘I’:_'f"l%lf_“l';i:fd Focus on reliability and Launched multiple clusters ~ Infra retries, task signals ~7,000 DAGs running

airflow_backfill observability across all clusters

Challenges at Scale AR

e Reliability: transient infra failures disrupted daily pipelines
e Performance: scheduler, metadata DB, and file I/O under pressure
e Simplicity: users needed fast iteration, but tooling was too slow

e Airflow became mission-critical faster than our team could grow

AIRFLOW.
SUMMIT

Edge cases define reliability

Edge case - Pod can be killed anytime SUMMIT

Problems:

e Sensor criteria met but task marked as failed

e State mismatch executor events, leading to retry or failed

A Details "3Graph [Gantt <>Code [Eventlog s K8s Pod Spec g Task Di

IIIII‘IIIIIIIIll IIIIII o

{environment.py:100} INFO - Environment is configured for ClientSecretC
{managed_identity.py:117} IN ManagedIdentityCredential will use IMD
{ch: 1

[2025-09-09, {ba:

5-09-09,

Edge case - Pod can be killed anytime

Cause: pod received sigterm at different time

|
il Slgterm .
-) -~
T -7 ittt - RN
im S ~
wme - __\A
i'; =T Celery worker
‘ -
\ fork
\J task supervisor process
*‘ A/
\
\
sSpawn
P \‘j task execution process

L
/l\ task success
: callback
|

task.execute()
finishes

AIRFLOW.
SUMMIT

Edge case - Pod killed forcibly AIRFELOW

Problems:

e Missing task execution logs led to confusion to users

Edge case - Pod killed forcibly AIRFELOW

Cause:

e Celery worker will finish all currently executing tasks before it actually
terminates

e Pod only waits terminationGracePeriodSeconds before being forcibly killed

o Led to zombie tasks, airflow tasks killed via -9’
o Airflow log handler does not have chance to upload logs to remote storage

Reliability - Auto retry & proper preStop SUMMIE

Solution:

e Proper preStop to sigterm airflow supervisor processes on pod deletion

e Auto-infra-retry policy — detects infra exceptions and reschedules
automatically

X Collapse Query Changes in inspect mode are not saved to the dashboard
u Metrics oai.task.auto_ret from $cluster-name

o Sigterm to the pod
o Executor events

o Zombie tasks

Reliability - Task idempotency key rd A5G

Goal: Avoid unnecessary spark job rerun due to airflow task retries
Solution:

e Add airflow task idempotency key
e Differentiate user-cleared

retry v.s. infra auto-retry

Sl«\oulol

comce.l

Spark job? /

is user cleared?
is timed out?

AirflowWorkerPool CRD Y

Problem: Worker pods get restarted during deployment, killing tasks

Solution:
e Custom AirflowWorkerPool CRD manages the lifecycle of each Airflow worker
deployment generation

g User: minikube <d> Describe <p> Logs Previous <t> Transfer
reconciliation loop K9s Rev: v0.50.9 <e> Edit <shift-f> Port-Forward <y> YAML
eSS K8s Rev: v1.33.1 <> Help <z> Sanitize
7 \ (CPU: n/a <shift-j> Jump Owner <s> Shell
') AirflowWorker Deployment rev - 1 MEM: n/a
) ! pods(all) [22]
N . e NAMESPACE NAME1 PF READY STATUS
airflow airflow-postgresql-0 (] 1/1 Running
1 pause airflow worker process pod airflow airflow-redis-0 . 1/1 Running
K 2. scale down P°°l if no tasks rum airflow airflow-scheduler-7c584bb75c-w2x4d ° 2/2 Running
8s worker airflow airflow-statsd-75fdf4bchd=7z1ic o 1/1 Running
AirﬂowWorkerOPemtor T airflow airflow-triggerer-0 . 2/2 Running
airflow adrflon-websorwer-7d71bibedas_xHanh . 1/1 Running
airflow airflow-worker-ping-crd-rev-1-57cb98c5¢9-91vz7 3 1/1 Running
airflow airflow-worker-ping-crd-rev-1-57cb98c5c9-x72zg (] 1/1 Running
airflow airflow-worker-ping-crd-rev-1-57cb98c5c¢9-xf8cv 3 1/1 Running
airflow airflow-worker-ping-crd-rev-2-66b5767576-5tgdj . 171 Running
airflow airflow-worker-ping-crdi-rev-3-7fd7f4b7df-2qwr8 L[] 1/1 Running
airflow airflow-worker-ping-crd-rev-3-7fd7f4b7df-dfx8z 3 1/1 Running
irflo orker loymen v - airflow airflow-worker-ping-crd-rev-3-7fd7f4b7df-hbngv ° 1/1 Runnin
Sreabe o ks fAliiseASrer Beppnent 16 = 3
o{gployment rev kube-system coredns—b/4b8bbTcT-vdnry/ . 1 Running
kube-system etcd-minikube 3 1/1 Running
Pod kube-system kube-apiserver-minikube 3 1/1 Running
kube-system kube-controller-manager-minikube . 1/1 Running
K kube-system kube-proxy-b7bdl L[] 1/1 Running
worker kube-system kube-scheduler-minikube L[] 1/1 Running
airflow my-awo-airflow-worker-operator-5c4cdcb7f9-pkvrb 3 1/1 Running
kube-system storage-provisioner ° /1 Running

AIRFLOW.
SUMMIT

Bottlenecks define scalability

DagRoller DaemonSet

Problem: Slow DAG synchronization over remote storage

Solution:

e A dag-roller DaemonSet syncs dag files from storage account to hostPath

e Airflow pods access DAGs locally through host mounted SSD volumes

Upload

Aass azure storage
account / Ai rFlow pod

, read dag files from pve

Airflow pod

k8s worker host

Upload tar.gz

> azure storage
}
\ [Airﬂow pod [Airﬁow pod]
PO“ ew CL\O\P\geS

via readiv\g 4 lood t dui
— ision i 3 ownload Tar read via

revision fle every 3¢ hostPath mount

write to

hostPath have an initContainer to

wait for the hostPath exists
AL
) R | B

Seccccc e .- -

k8s worker host

Multi-Cluster sharding

Problem: Scaling limit per cluster
Solution:

e Split workloads by use case
e FEach cluster has dedicated metadata DB, redis, and k8s cluster

e Focus on building layers to manage many clusters

AIRFLOW.
SUMMIT

Toolings define efficiency

Self-Serve Tooling AIRFLOW

Local task execution

e continue improving reliability and scheduler responsiveness to make local test results match production behavior
Custom backfill at scale

e add better queue control, visibility, and safety features as usage and workloads grow
Slack bot assistant

e smarter and more accurate by learning from real support threads and connecting more deeply to metadata
YAML-first DAGs

e expand coverage, simplify common cases, reduce boilerplate and generator improvements

AIRFLOW.
Future Work H SUMMIT

Reliable scheduler behavior

e continue reducing control plane latency and making infra issues invisible to users
Horizontal scalability

e expand multi-cluster support and worker pool management to serve more teams cleanly
Lower the learning curve

e Backfills are simple. Local tests are fast. Signals are clear. Self-serve

Feedback-driven platform

e strengthen the loop from support channel to Slack bot to infra and docs, so the system improves as usage grows

We Are Hiring AIRFLOW

e hitps://openai.com/careers/engineering-manager-data-infrastructure/

e https://openai.com/careers/data-infrastructure-engineer/

https://openai.com/careers/engineering-manager-data-infrastructure/
https://openai.com/careers/data-infrastructure-engineer/

