
Airflow at OpenAI

Ping Zhang & Hongyi Wang

Agenda

● Airflow Journey at OpenAI

● Challenges

● Reliability

● Scaling

● Tooling

● Future work

From Expectation to Reality

Early Days at OpenAI

● 20 engineers on the data platform team
● No dedicated Airflow team, limited engineering bandwidth
● Each team used its own orchestration: Dagster, notebooks, scripts
● This flexibility helped early on, but made production harder

The Shift to Airflow

 “

● We made a deliberate shift: unify on Airflow as the backbone
● Moved DAGs into the monorepo, tied task logic to orchestration
● Adopted software best practices: review, test, deploy together
● This gave us a consistent, flexible foundation to scale
● Set the stage for solving reliability, scaling, and usability

The Shift to Airflow

 “

● We made a deliberate shift: unify on Airflow as the backbone
● Moved DAGs into the monorepo, tied task logic to orchestration
● Adopted software best practices: review, test, deploy together
● This gave us a consistent, flexible foundation to scale
● Set the stage for solving reliability, scaling, and usability

Challenges at Scale

● Reliability: transient infra failures disrupted daily pipelines
● Performance: scheduler, metadata DB, and file I/O under pressure
● Simplicity: users needed fast iteration, but tooling was too slow
● Airflow became mission-critical faster than our team could grow

Edge cases define reliability

Edge case - Pod can be killed anytime

Problems:

● Sensor criteria met but task marked as failed

● State mismatch executor events, leading to retry or failed

Edge case - Pod can be killed anytime

Cause: pod received sigterm at different time

Edge case - Pod killed forcibly

Problems:

● Missing task execution logs led to confusion to users

Edge case - Pod killed forcibly

Cause:

● Celery worker will finish all currently executing tasks before it actually
terminates

● Pod only waits terminationGracePeriodSeconds before being forcibly killed
○ Led to zombie tasks, airflow tasks killed via `-9`
○ Airflow log handler does not have chance to upload logs to remote storage

Reliability - Auto retry & proper preStop

Solution:

● Proper preStop to sigterm airflow supervisor processes on pod deletion

● Auto-infra-retry policy → detects infra exceptions and reschedules
automatically
○ Sigterm to the pod

○ Executor events

○ Zombie tasks

Reliability - Task idempotency key

Goal: Avoid unnecessary spark job rerun due to airflow task retries

Solution:

● Add airflow task idempotency key

● Differentiate user-cleared

 retry v.s. infra auto-retry

AirflowWorkerPool CRD

Problem: Worker pods get restarted during deployment, killing tasks

Solution:
● Custom AirflowWorkerPool CRD manages the lifecycle of each Airflow worker

deployment generation

Bottlenecks define scalability

DagRoller DaemonSet

Problem: Slow DAG synchronization over remote storage

Solution:

● A dag-roller DaemonSet syncs dag files from storage account to hostPath
● Airflow pods access DAGs locally through host mounted SSD volumes

Multi-Cluster sharding

Problem: Scaling limit per cluster

Solution:

● Split workloads by use case

● Each cluster has dedicated metadata DB, redis, and k8s cluster

● Focus on building layers to manage many clusters

Toolings define efficiency

Self-Serve Tooling
Local task execution

● continue improving reliability and scheduler responsiveness to make local test results match production behavior

Custom backfill at scale

● add better queue control, visibility, and safety features as usage and workloads grow

Slack bot assistant

● smarter and more accurate by learning from real support threads and connecting more deeply to metadata

YAML-first DAGs

● expand coverage, simplify common cases, reduce boilerplate and generator improvements

Future Work
Reliable scheduler behavior

● continue reducing control plane latency and making infra issues invisible to users

Horizontal scalability

● expand multi-cluster support and worker pool management to serve more teams cleanly

Lower the learning curve

● Backfills are simple. Local tests are fast. Signals are clear. Self-serve

Feedback-driven platform

● strengthen the loop from support channel to Slack bot to infra and docs, so the system improves as usage grows

We Are Hiring

● https://openai.com/careers/engineering-manager-data-infrastructure/

● https://openai.com/careers/data-infrastructure-engineer/

https://openai.com/careers/engineering-manager-data-infrastructure/
https://openai.com/careers/data-infrastructure-engineer/

