
Scaling ML 
Infrastructure: 
Scaling ML Infrastructure: Lessons 
from Building Distributed Systems

Ashok Prakash, 
Senior Principal Engineer, Oracle Cloud & Health



New Infrastructure Bottleneck

The Core Problem: The Compute Demand

● The Shift: We moved from training small CV/NLP models to training and fine-tuning LLMs 
and large models, requiring vast, contiguous GPU resources (Current Generation GPU 
Accelerators).

● The Cost: GPUs are the most expensive resource in the data center. Idle time means wasted 
capital.

● The Time: In our early days, launching a multi-node GPU experiment took days of manual 
configuration. This is unacceptable for scaling R&D velocity.

● My Experience: I've spent the last few years building the Kubernetes control plane to solve 
this exact bottleneck for thousands of nodes.



Navigating the AI Scale Challenge

The Foundation: Kubernetes and GitOps for Scalable Infrastructure.

The Logic Plane: Why Airflow is the natural orchestrator for MLOps.

Scaling the Pipeline: Technical Deep Dive: Dynamic GPU Allocation and CI/CD.

Airflow for RoI: Orchestrating Observability and Fleet Management.

Key Takeaways and Guidelines.



The Foundation: The Kubernetes "Paved Path"



Challenge: Bare-Metal Complexity vs. 
Developer Velocity

Legacy State: Bare-Metal The New Goal: Paved Path (Self-Service)

Days to provision a cluster. Minutes to launch an workload.

Manual and configuration. Self-service (Kubernetes).

Configuration drift is common. 100% Declarative state (GitOps).

Low utilization (≤50%). Elastic, High utilization (≥80%) via smart 
scheduling.



Pillar 1: Kubernetes for GPU Abstraction

Kubernetes is a great option for control plane compute scaling.

● Resource Isolation: Provides guaranteed via Pod limits and requests. Critical for 
multi-tenant environments.

● Decoupling Compute: Abstracts the physical hardware (High-Performance GPU 
Accelerators) behind a consistent API. The ML team shouldn't care about the OS or drivers.

● Dynamic Scaling: Native support for Cluster Autoscaler (CAS) to scale GPU node pools 
based on pending Pod demand.

● Advanced Scheduling: Leveraging specialized GPU Device Plugin/Operator and features 
like Hardware Partitioning Feature for fractional GPU sharing on inference workloads.



Pillar 2: 
Version Control as the Single Source of Truth

If it’s not in VC, it doesn’t exist.

● IaC (Leading IaC Tool): Manages the cloud infrastructure layer (VPCs, Network, Load 
Balancers, Clusters).

● Config Mgmt (GitOps Controller): Manages the application and configuration layer within 
K8s (Operators, CNIs, Logging/Monitoring agents, ML deployments).

● Eliminating Drift: Ensures that all cluster changes flow through a codified, reviewed process. 
Our goal was 100% declarative state, which radically reduced reliability issues.

● Infra Workflows: These workflows (create cluster, upgrade node pools, patch network) are 
too critical for a general-purpose scheduler. They need a system designed for declarative 
state management.



Pillar 3: Maximizing GPU Return on 
Investment

We must 'sweat the asset', GPUs cannot sit idle.

● Automated Provisioning: Built custom pipelines to monitor hardware availability and provision 
fleets of thousands of nodes across multiple regions automatically.

● Dynamic Right-Sizing: Enforcing strict resource requests (70-80% of peak) and using limit ranges 
to prevent over-reserving, thus improving bin-packing efficiency.

● Spot/Preemptible Usage: Orchestrating workloads to use high-risk, low-cost Spot instances 
whenever possible, using Airflow upstream to manage the data staging before the K8s job.

● Triage and Repair: Utilizing sophisticated structured logging and automated healing processes to 
automatically detect and repair unhealthy GPU nodes, minimizing downtime.



Airflow: The MLOps Orchestration Core



Airflow: The Logic Plane for MLOps

General-purpose orchestrator is essential for AI pipelines.

● MLOps is a set of heterogeneous tasks: Data, Compute, Model Registry, Serving Layer. No 
single tool does it all well.

● Airflow's Role: It acts as the "glue" and the central nervous system, translating complex, 
distributed dependencies into simple, readable DAGs.

● Python Native: Using Python to define workflows is a massive win for ML teams, who can 
use the same language for their DAGs and their core logic.



The Three Pillars of Airflow in MLOps

Pillar Description Airflow Feature Suggestion

Data Agnosticism Orchestrates ETL/ELT 
regardless of source 
(Cloud Storage, Data 
Warehouse, etc.)

Providers/Hooks Great fit

Scalable Compute Manages the dynamic 
allocation of isolated, 
resource-heavy jobs.

KubernetesExecutor Good Fit with 
Combination of 
Kubernetes

Reliability Ensures pipeline 
governance, error 
handling, and 
automated retries.

SLA, Branching, 
Callbacks

Great fit for telemetry, 
resilience 



Seamless Integration with the Compute 
Plane

Airflow as the Commander of Kubernetes Resources

● K8sExecutor: This is the game-changer for ML. It allows every task to run in its own 
Kubernetes Pod, isolated and disposable.

● Task Isolation: The K8s Pod can request specific requirements, a particular GPU type, 
specialized PyTorch container image, high memory.

● Resource Efficiency: Airflow's scheduler manages the execution logic while Kubernetes 
manages the compute resources, leading to maximum utilization of expensive GPUs.



Airflow Orchestrating Data Preparation

Training only starts when data is perfect.

● Data Dependencies: Use Airflow to define the complex sequence: Ingestion → 
Validation → Feature Engineering → Feature Store Load.

● Data Quality Gates: Integrate data quality checks (DQ tools) as mandatory tasks in 
the DAG. Use Branching Operators to halt the pipeline if DQ checks fail.

● Example: A daily DAG that cleanses petabytes of time-series data using a 
Distributed Computing Framework (triggered via a K8sPodOperator) before firing 
the model training step.



Airflow: MLOps Continuous Training (CT)

Automating the Model Lifecycle on New Data

● Scheduled Retraining: Airflow ensures your models are kept fresh by running the full 
pipeline on a defined schedule (e.g., daily, weekly).

● Event-Driven Triggers: Leveraging sensors or external calls to trigger a retraining DAG 
instantly when:

○ Significant new data is ingested.
○ Production metrics detect model drift.

● Reproducibility: The DAG acts as the central definition, ensuring that the same set of 
preprocessing, training parameters, and evaluation steps are executed every time.



Airflow & The Kubernetes Executor: Logic vs. 
Compute
How to use Airflow for resource-intensive jobs.

● The Problem with Workers: Running a 10-hour GPU job directly on an Airflow worker 
ties up resources and is hard to isolate.

● The Solution: Kubernetes Executor: The DAG defines the logic, but each task is 
executed in a dynamically launched Kubernetes Pod.

● Benefits:
1. Isolation: Each task gets its own container image and dependencies.
2. Resource Customization: The K8s Pod can request specific GPU types or 

quantities.
3. Scalability: K8s handles the scheduling and cluster autoscaling automatically 

based on Airflow's needs.



Scaling Compute and Data with Airflow



Technical Deep Dive: Dynamic Task Mapping 
(DTM)

Scaling Training and Experimentation within a Single DAG

● The Need: We need to run the same training task across of hyperparameter combinations or 
50 regional datasets.

● Airflow DTM: Allows a task to dynamically generate a list of inputs (e.g., 100 JSON parameter 
files) that the downstream task will map and execute in parallel.

● Efficiency: Instead of writing 100 lines for 100 tasks, you define one mapped task, which runs 
N parallel K8s Pods, each requesting specific GPU resources.

● Use Case: Mass parallel hyperparameter tuning using K8sExecutor → faster 
time-to-best-model.



Technical Deep Dive: Data Sharing via XCom

Passing Metadata and Artifacts in a Scaled Pipeline

● The Challenge: How does the "Train" task tell the "Evaluate" task where the artifact is stored?
● Airflow XCom (Cross-Communication): Ideal for passing small metadata objects between 

tasks, like:
○ S3 URI of the trained model.
○ Model Version ID.
○ Training Metrics Summary.

● Best Practice: Do not pass large data files. Use XCom to pass references (URIs, UUIDs) to 
data/models stored in dedicated, versioned systems (e.g., Cloud Storage, Model Registry).



Technical Deep Dive: TaskFlow API and 
Pythonic ML

Simplifying Workflow Authoring

● The Goal: Make ML engineers feel at home.
● Airflow TaskFlow: Use Python functions decorated with @task to define tasks, 

eliminating boilerplate operators.
● Simplicity: Native Python type hints and functional composition make DAGs look more 

like clean Python code, boosting ML developer experience.
● Integration: Easily wrap existing PyTorch or TensorFlow or Agentic AI workflow scripts 

into TaskFlow functions for inclusion in the DAG.



Airflow for Infrastructure Actions: Setup and 
Teardown

Managing Ephemeral Compute Environments

● The Requirement: Certain jobs (like multi-node distributed training) require temporary, 
dedicated infrastructure (e.g., a Ray cluster or a large Spark cluster).

● Setup/Teardown Tasks: Airflow allows defining tasks that create (Setup) or destroy 
(Teardown) external resources.

● Example Flow:
1. Setup Task: Use IaC or Cloud Operator to provision a temporary, high-capacity GPU 

cluster.
2. Training Task: Use the cluster for ML training.
3. Teardown Task: Execute automatically to destroy the cluster, ensuring no compute 

resources are wasted.



Airflow and Beyond: AI Native Features

Looking Forward: New Capabilities for MLOps

● Sleek & Better Usability: Modernized interface enhances ML pipeline visibility and 
debugging 

● Smarter Backfills: More efficient reprocessing of historical data, critical for retraining 
models on large, updated datasets.

● Native AI/ML Support: Increased integration with LLM-adjacent features, streamlining 
pipelines for Generative AI use cases (e.g., RAG pipelines).



Airflow for Production & Infrastructure RoI



Airflow: The Production CI/CD Gate

Ensuring only the best models reach the Paved Path.

● The Flow: The is the Continuous Deployment controller, acting after training is complete.
● Validation Tasks: Run final evaluation against a live validation set. Calculate SLOs (e.g., 

f1-score, latency P95).
● Deployment Gate: Use Branching Logic to decide the path:

○ Success: Model meets SLO→ Trigger Declarative Deployment Tool to update the K8s 
Serving Deployment.

○ Failure: Model fails SLO→ Send alert to team, stop deployment, and potentially rollback 
to the last known good model.



Best Practice: Modular DAGs for Team Scale

Scaling the organization requires separating logic from orchestration.

● Reusability: Separate core logic (Python functions/scripts) from the DAG 
definition.

● Task Groups: Use Task Groups to organize complex pipeline stages (ETL, TRAIN, 
DEPLOY) into collapsible, manageable units within the UI.

● Collaboration: Allows data scientists to focus on ML code while ML Engineers 
focus on DAG structure and environment management.



Best Practice: Security and Credentials 
Management

Airflow as the Secure Intermediary

● Avoid Hardcoding: Never store credentials or sensitive configuration in the file.
● Airflow Connections: Use the built-in Connections Manager for database/cloud 

access details.
● Secrets Backends: Integrate Airflow with external Secrets Management systems 

(e.g., Vault or Cloud Secret Stores) for production environments, keeping 
credentials out of the Airflow database entirely.



The Reliability Imperative: Observability

Integrating Pipeline Health into the Infrastructure Stack

● Logging and Metrics: Airflow's native logging integrates with external logging solutions, 
giving us a unified view of pipeline execution alongside GPU host metrics.

● Airflow's UI as the Dashboard: The DAG View provides real-time status, logs, and 
duration tracking for all ML jobs.

● Automatic Retries: ML jobs can be flaky. Airflow's built-in retry logic provides resilience 
against transient failures (e.g., network timeout, brief resource unavailability).



Scaling the Human Factor with Airflow

The Self-Service Workflow

● Developer Experience: The Paved Path allows ML teams to launch GPU jobs in 
minutes. Airflow provides the organized, visual workflow to manage those jobs afterward.

● Standardization: Airflow enforces a standard structure (DAGs) for all pipeline logic, 
making it easier for new engineers to onboard and understand existing production flows.

● Impact: This standardization supports the massive scale of the engineering organization, 
turning complex ML operations into a repeatable, auditable flow.



The Paved Path to Production Flow

A Full Lifecycle Example

1. Airflow Task 1 (Prep): Triggers Job to run ETL using a Spark image. Passes Data URI 
via XCom.

2. Airflow Task 2 (Train): Uses KubernetesExecutor to launch 100 parallel Pods (via 
DTM). Each Pod requests one GPU.

3. Airflow Task 3 (Validate): Retrieves metrics from XCom and runs Branching Operator.
4. Airflow Task 4 (Deploy): If metrics pass, triggers Declarative Deployment Tool to deploy 

the model service to the K8s cluster.



Three Key Technical Guidelines

1. KubernetesExecutor: Use the KubernetesExecutor exclusively for ML tasks to leverage 
dynamic GPU allocation and eliminate worker strain.

2. Maximize DTM: Use Dynamic Task Mapping for all forms of parallel ML work (hyperparameter 
sweeps, multi-region inference, batch prediction).

3. XCom for Metadata, Not Data: Only pass small configuration and artifact URIs between tasks; 
keep large data in a high-performance external store.



Conclusion: Airflow is the Future of MLOps 
Scale

● Airflow is far more than a simple scheduler, it is the ideal Logic Orchestrator 
for complex, distributed, and heterogeneous ML pipelines.

● By embracing the KubernetesExecutor and features like Dynamic Task 
Mapping, Airflow directly solves the scaling challenges posed by modern 
GPU-accelerated AI.

● The path to scaling AI infrastructure is paved by K8s and orchestrated by 
Airflow.



https://www.linkedin.com/in/ashok-prakash/

Questions?

https://www.linkedin.com/in/ashok-prakash/

