
Seamless Airflow Upgrades:
Migrating from 2.x to 3

Ankit Chaurasia
Senior Software Engineer

Run anywhere,

in any language

Scheduler-man

aged backfills

Modern UI & UX Event driven

scheduling &

Data assets

Task SDK Lean core and

Providers

DAG Versioning Security

upgrades

Seamless

upgrades

Edge Executor Inference and

hyperparameter

tuning

Developer

experience

Why Upgrade to Airflow 3?

01 Take care of the Prerequisites

02 Backup & Clean your existing Airflow instance

03 Verify DAG Compatibility using Ruff

04 Update Airflow Configuration

05 Address known Breaking Changes

06 Upgrade and test in Development

07 Production Upgrade

08 Post-Upgrade Validation

Seamless Airflow 3
Upgrade:
Step-by-Step
Checklist

Airflow Version:

Must be 2.6.3 or

higher (ideally 2.7.x)

for a smooth Airflow

3 upgrade path

Python Version:

Airflow 3 requires

Python 3.9; support

for 3.7 and 3.8 is

dropped

Database Compatibility:

Metadata DB must be

PostgreSQL 13+ or MySQL

8+ due to SQLAlchemy 2.x

migration

Providers &

Dependencies: Install

apache-airflow-provider

s-standard plus any

additional DAG providers

needed

Astronomer users

benefit from managed

runtimes; open-source

users must verify and

upgrade manually

Step 1: Versions Check and Prepare for upgrade

Backup Your Database
Make a backup of your Airflow

metadata database before

starting the migration. Shut

down Airflow instances if no

hot backup is available to

ensure consistency.

Avoid Migration Risks
A backup prevents issues from

failed migrations or network

interruptions that could leave

your system in a half-migrated

state.

Clean Up Old Data
Use the airflow db clean CLI

command to remove

unnecessary data like old

XComs to reduce database

size and speed up schema

changes.

Resolve DAG Errors
Ensure no DAG processing

errors remain, such as

AirflowDagDuplicatedIdExcepti

on. Run airflow dags reserialize

without errors before

proceeding.

Step 2: Clean and Back Up Your Existing Airflow
Instance

Run lint checks for breaking changes: `ruff check dags/ --select AIR301`.

Preview automated corrections with `--show-fixes` to verify suggested code

updates

Apply safe fixes instantly using `--fix`, updating imports and parameters without

manual edits

Use `--fix --unsafe-fixes` cautiously for import path changes that may alter

behavior

Re-run checks until no AIR rule violations remain, confirming code is fully upgraded

Astronomer users can execute `astro dev upgrade-test` to automate all steps

including dependency verification

Step 3 – Ensure
DAG Code
Compatibility
with Ruff

Install Ruff v0.13.1 or later: pip install --upgrade ruff

AIR30 Rules
Mandatory)

Check for removed

parameters and

imports no longer

available in Airflow 3

1.

Mandatory changes

to ensure DAGs

function correctly in

Airflow 3

2.

AIR31 Rules
Check for deprecated

parameters and imports

still available in Airflow 3

1.

Recommended changes

to maintain

compatibility with

future Airflow versions

2.

Ruff Rules for Airflow 3 Upgrade

Using Ruff Linter OSS
Install the latest Ruff linter via pip: `pip install --upgrade ruff`1.

Run Ruff on your DAG code: `ruff check --preview --select AIR30 `2.

Use `--fix` flag to automatically fix some mandatory issues3.

Ruff outputs errors with suggestions, e.g., renaming deprecated

DAG params like `fail_stop` to `fail_fast`. Fix the mandatory issues.

4.

Requires manual review of breaking changes and Airflow release

notes for full compatibility

5.

Using Astro CLI
Run `astro dev upgrade-test` which also includes Ruff linter as

part of command and fix the ruff issues.

1.

Automatic detection of Airflow 3 compatibility issues within Astro

environment

2.

Airflow OSS Ruff linter vs. Astro CLI

Run airflow config update to detect deprecated,

moved, or invalid configs in airflow.cfg

Review both breaking and recommended config

changes

Use airflow config update --fix to auto-apply fixes

with backup creation for old airflow configuration file

Step 4: Check and fix breaking Airflow configs

Upgrade to Airflow 2.11.0 as airflow config update

is available from this version.

Default Values Changes Renamed Options Removed Options Invalidated Previously
Valid Options

Types of Airflow 3 configuration changes

Direct DB Access Removed: Replace task code that opens DB sessions or queries

metadata directly with Airflow public APIs or REST calls.

Scheduling & Timetables Changes: Replace `schedule_interval` with `schedule`. New

cron triggers disable automatic backfills by default; enable with `scheduler

create_cron_data_intervals=True`.

Execution Date Context: Update DAGs to replace `execution_date` and related

variables with `logical_date` and `data_interval_start/end`.

Removed Features: Migrate from SubDAGs to TaskGroups or Datasets; replace SLA

miss alerts with external monitoring; update plugins to new system as FAB-based

plugins need compatibility provider.

XCom Serialization: Disallow pickled XComs by default for security. Migrate to

custom backends. Old pickled XComs archived during DB migration.

Provider Changes: Operators and hooks moved to separate provider packages

requiring explicit installation.

Step 5 – Assess
Breaking
Changes

https://app.presentations.ai/undefined

01

Set up a local or

staging Airflow

environment

02

Upgrade Airflow

to version 3,

apply all config

and DAG code

changes, then run

airflow db

upgrade to

migrate metadata

schema

03

Start Airflow 3

components: API

server replaces

webserver; run

dag-processor

alongside

scheduler

04

Trigger and

monitor all critical

DAGs, verifying

task execution,

scheduling,

XComs, and

templated

variables

05

Fix errors

iteratively and

re-test until all

DAGs run cleanly

Step 6 – Upgrade & Test Airflow 3 Locally

01

Install Airflow 3

Install Airflow 3 (e.g., pip

install

apache-airflow==3.0.0

with constraints, or use the

official Airflow 3 Docker

image). Apply the same

configuration changes

using the updated

airflow.cfg and include the

DAG code fixed via Ruff.

02

Run Ruff linter and
airflow config
update

Run Ruffʼs AIR rules linter to

identify breaking code

changes. Use airflow

config update tool to

migrate config files to

Airflow 3 format.

03

Database
Migrations

Run database migrations

with airflow db upgrade

(equivalent to airflow db

migrate) to upgrade the

metadata DB schema.

04

Change your
startup script

Run airflow api-server and

airflow dag-processor

05

Run airflow and
test the DAGs

Run database migrations

with airflow db upgrade

(equivalent to airflow db

migrate) to upgrade the

metadata DB schema.

Upgrade and Test locally (OSS method)

Demo Upgrade and Test locally
(OSS method)

https://docs.google.com/file/d/1YvTUPYdfx_lHcKPEpO8RzCqUScwA8DTQ/preview

01

Update Astro Project

Change your Astro project's

Dockerfile base image to the

new Astro Runtime Airflow 3

tag from astronomer.io.

02

Run upgrade
compatibility tests
and fix

Use Astro CLI command 'astro

dev upgrade-test

--runtime-version ' to run

compatibility tests including

dependencies.

03

Start Airflow 3 locally

Execute 'astro dev start' or

'astro dev restart' to launch

Airflow 3 locally with your

project's DAGs and config.

04

Verify Local Setup
and Run DAGs

Access the Airflow 3 web UI at

http://localhost:8080 to verify that

components like API server,

scheduler, triggerer, and local

Postgres are running.

Upgrade and test locally: Using astro cli

Demo Upgrade and test locally:
Using astro cli

https://docs.google.com/file/d/1yXx8PzJyQCG8LZtDxZy_0nFxQtwmRpQV/preview

Upgrade existing environment

by installing Airflow 3 and

migrating live DB

1.

Requires downtime during

migration and service restarts

2.

Rollback is complex3.

Must update service scripts for

new API server and

dag-processor

4.

In-Place Upgrade
Advanced)

Set up new Airflow 3

environment alongside

existing Airflow 2

1.

Deploy updated DAGs and

config with fresh or migrated

metadata DB

2.

Test fully before switching

traffic to Airflow 3 to

minimize downtime

3.

Supports easy rollback by

switching back to Airflow 2

4.

Astronomer users can

upgrade via UI or CLI

seamlessly

5.

Open-source users must

provision new infrastructure

and handle DB migration

6.

Blue-Green Deployment
Recommended)

Choose Your
Production
Upgrade
Strategy:
Blue-Green vs
In-Place

Astronomerʼs Upgrade Guide Airflow 2  3

Official Apache Airflow Documentation – “Upgrading to

Airflow 3ˮ

Astral Ruff Airflow Rules Documentation: Details on

AIR301, AIR302 (mandatory) and AIR311, AIR312

(recommended) linter rules

Astronomer Support & Community Slack

Apache Airflow Slack Channel (#airflow-upgrade)

Essential Q&A & Upgrade Resources

QUESTION?

The 2025 Apache
Airflow® Survey
is here!

Fill it out to get a free Airflow 3
Fundamentals or DAG Authoring in

Airflow 3 certification code

