Seamless Airflow Upgrades:
Migrating from 2.x to 3

Ankit Chaurasia

Senior Software Engineer

ASTRONODMER

Run anywhere,

in any language

DAG Versioning

Why Upgrade to Airflow 3?

Scheduler-man Modern Ul & UX Event driven Task SDK
aged backfills scheduling &

Data assets

Security Seamless Edge Executor Inference and

upgrades upgrades hyperparameter

tuning

Lean core and

Providers

Developer

experience

ASTRONODMER

Seamless Airflow 3
Upgrade:

Step-by-Step
Checklist

01

02

03

04

05

06

07

08

Take care of the Prerequisites

Backup & Clean your existing Airflow instance

Verify DAG Compatibility using Ruff

Update Airflow Configuration

Address known Breaking Changes

Upgrade and test in Development

Production Upgrade

Post-Upgrade Validation

ASTRONODMER

Step 1: Versions Check and Prepare for upgrade

8

Airflow Version: Python Version: Database Compatibility: Providers & Astronomer users
Must be 2.6.3 or Airflow 3 requires Metadata DB must be Dependencies: Install benefit from managed

higher (ideally 2.7.x) Python 3.9+; support [PostgreSQL 13+ or MySQL B apache-airflow-provider ll runtimes; open-source

for a smooth Airflow for 3.7 and 3.8 is 8+ due to SQLAIchemy 2.x s-standard plus any users must verify and
migration

3 upgrade path dropped additional DAG providers upgrade manually

needed

ASTRONODMER

Step 2: Clean and Back Up Your Existing Airflow

Instance

Backup Your Database Avoid Migration Risks Clean Up Old Data

Resolve DAG Errors

Make a backup of your Airflow A backup prevents issues from Use the airflow db clean CLI Ensure no DAG processing

metadata database before failed migrations or network command to remove errors remain, such as
starting the migration. Shut interruptions that could leave unnecessary data like old AirflowDagDuplicatedldExcepti

down Airflow instances if no your system in a half-migrated XComs to reduce database

on. Run airflow dags reserialize

hot backup is available to state. size and speed up schema without errors before

ensure consistency. changes. proceeding.

ASTRONODMER

Step 3 — Ensure
DAG Code
Compatibility

with Ruff

Install Ruff v0.13.1 or later: pip install --upgrade ruff

Run lint checks for breaking changes: ‘ruff check dags/ --select AIR301".

Preview automated corrections with "--show-fixes" to verify suggested code

updates

Apply safe fixes instantly using "--fix’, updating imports and parameters without

manual edits

Use "--fix --unsafe-fixes™ cautiously for import path changes that may alter

behavior

Re-run checks until no AIR rule violations remain, confirming code is fully upgraded

Astronomer users can execute "astro dev upgrade-test’ to automate all steps

including dependency verification

AIR30 Rules
(Mandatory)

1. Check for removed
parameters and
imports no longer
available in Airflow 3

2. Mandatory changes
to ensure DAGs
function correctly in

Airflow 3

Ruff Rules for Airflow 3 Upgrade

AIR31 Rules

1. Check for deprecated
parameters and imports

still available in Airflow 3

2. Recommended changes
to maintain
compatibility with

future Airflow versions

dags/my_dag.py:19:5: AIR301 [*] “fail_stop™ is removed in Airflow 3.0

start_date=datetime (2025, 1, 1),
schedule="@daily",
fail_stop=True

ANAAANNAAN AIR301

help: Use fail_fast instead

Found 1 error.
[*] 1 fixable with the "--fix option.

ASTRONODMER

Airflow OSS Ruff linter vs. Astro CLI

Using Ruff Linter (OSS)
1. Install the latest Ruff linter via pip: "pip install --upgrade ruff’

2. Run Ruff on your DAG code: ‘ruff check --preview --select AIR30 °

3. Use '--fix" flag to automatically fix some mandatory issues

4. Ruff outputs errors with suggestions, e.g., renaming deprecated

DAG params like fail_stop” to ‘fail_fast'. Fix the mandatory issues.

5. Requires manual review of breaking changes and Airflow release

notes for full compatibility

Using Astro CLI

1.

Run "astro dev upgrade-test which also includes Ruff linter as

part of command and fix the ruff issues.

environment

. Automatic detection of Airflow 3 compatibility issues within Astro

ASTRONODMER

Step 4: Check and fix breaking Airflow configs

Upgrade to Airflow 2.11.0 as airflow config update

is available from this version.

Run airflow config update to detect deprecated,

moved, or invalid configs in airflow.cfg

Review both breaking and recommended config

changes

Use airflow config update --fix to auto-apply fixes

with backup creation for old airflow configuration file

1 1 1 1 1 1 1 1 1 1 1
p - | e | = | e | = = ™ — = — —
C o ‘ 5 O O y o0 O O
T o - < I o J- o B o - - I - - - R - - o [o

(=) (ep. Q) (P op) (P (ep) «P)) P (P
O bed bed b bed bed bed bed Bed Bd B Bed
s

Updated
Removed
Renamed
Renamed

FEQEIE

Renamed
Renamed

default value of

to

Renamed '\

Updated
Renamed
Renamed

default value of

from

from configuration.
to
to

to
to
to
from
to
to

to

to

ASTRONODMER

Types of Airflow 3 configuration changes

Default Values Changes Renamed Options Removed Options Invalidated Previously
Valid Options

ASTRONODMER

Step b — Assess
Breaking

Changes

Direct DB Access Removed: Replace task code that opens DB sessions or queries

metadata directly with Airflow public APIs or REST calls.

Scheduling & Timetables Changes: Replace schedule_interval® with ‘schedule’. New

cron triggers disable automatic backfills by default; enable with "scheduler

create_cron_data_intervals=True'.

Execution Date Context: Update DAGs to replace "execution_date™ and related

variables with ‘logical_date’ and "data_interval_start/end".

Removed Features: Migrate from SubDAGs to TaskGroups or Datasets; replace SLA

miss alerts with external monitoring; update plugins to new system as FAB-based

plugins need compatibility provider.
XCom Serialization: Disallow pickled XComs by default for security. Migrate to

custom backends. Old pickled XComs archived during DB migration.

Provider Changes: Operators and hooks moved to separate provider packages

requiring explicit installation.

https://app.presentations.ai/undefined

Step 6 — Upgrade & Test Airflow 3 Locally

Set up alocal or Upgrade Airflow Start Airflow 3 Trigger and Fix errors
staging Airflow to version 3, components: API monitor all critical iteratively and
environment apply all config server replaces DAGs, verifying re-test until all

and DAG code webserver; run task execution, DAGSs run cleanly

changes, then run dag-processor scheduling,

airflow db alongside XComs, and

upgrade to scheduler templated

migrate metadata variables

schema

ASTRONODMER

Upgrade and Test locally (OSS method)

Install Airflow 3

Install Airflow 3 (e.qg., pip
install
apache-airflow==3.0.0
with constraints, or use the
official Airflow 3 Docker
image). Apply the same
configuration changes
using the updated
airflow.cfg and include the

DAG code fixed via Ruff.

Run Ruff linter and
airflow config
update

Run Ruff’s AIR rules linter to
identify breaking code
changes. Use airflow
config update tool to
migrate config files to

Airflow 3 format.

Database

Migrations

Run database migrations
with airflow db upgrade
(equivalent to airflow db
migrate) to upgrade the

metadata DB schema.

Change your

startup script

Run airflow api-server and

airflow dag-processor

Run airflow and
test the DAGs

Run database migrations
with airflow db upgrade
(equivalent to airflow db
migrate) to upgrade the

metadata DB schema.

ASTRONODMER

Demo Upgrade and Test locally
(OSS method)

RRRRRRRRRR

https://docs.google.com/file/d/1YvTUPYdfx_lHcKPEpO8RzCqUScwA8DTQ/preview

Upgrade and test locally: Using astro cli

Update Astro Project Run upgrade Start Airflow 3 locally Verify Local Setup
compatibility tests and Run DAGs
and fix
Change your Astro project's Use Astro CLI command 'astro Execute 'astro dev start' or Access the Airflow 3 web Ul at
Dockerfile base image to the dev upgrade-test 'astro dev restart' to launch http://localhost:8080 to verify that
new Astro Runtime (Airflow 3) --runtime-version ' to run Airflow 3 locally with your components like API server,
tag from astronomer.io. compatibility tests including project's DAGs and config. scheduler, triggerer, and local
dependencies. Postgres are running.

ASTRONODMER

Demo Upgrade and test locally:

Using astro cli

ASTRONODMER

https://docs.google.com/file/d/1yXx8PzJyQCG8LZtDxZy_0nFxQtwmRpQV/preview

Choose Your
Production
Upgrade
Strategy:
Blue-Green vs

In-Place

Blue-Green Deployment
(Recommended)

1. Set up new Airflow 3
environment alongside

existing Airflow 2

2. Deploy updated DAGs and
config with fresh or migrated

metadata DB

3. Test fully before switching
traffic to Airflow 3 to

minimize downtime

4. Supports easy rollback by

switching back to Airflow 2

5. Astronomer users can
upgrade via Ul or CLI

seamlessly

6. Open-source users must
provision new infrastructure

and handle DB migration

In-Place Upgrade
(Advanced)

1.

Upgrade existing environment
by installing Airflow 3 and
migrating live DB

. Requires downtime during

migration and service restarts

. Rollback is complex

. Must update service scripts for

new API server and

dag-processor

ASTRONOMER

Essential Q&A & Upgrade Resources

wh K N
-

-

B\ (3

Astronomer'’s Upgrade Guide (Airflow 2 - 3) Astronomer Support & Community Slack

5

Apache Airflow Slack Channel (#airflow-upgrade)

Official Apache Airflow Documentation - “Upgrading to
Airflow 3"

Astral (Ruff) Airflow Rules Documentation: Details on
AIR301, AIR302 (mandatory) and AIR311, AIR312

(recommended) linter rules

ASTRONODMER

QUESTION?

The 2025 Apache
Airflow® Survey

Is here!

RRRRRRRRRR

