
Seamless Integration: Building
Applications That Leverage Airflow's

Database Migration Framework

Ephraim Anierobi
Senior Software Engineer @ astronomer.io

Committer
PMC Member

Airflow
metadata
Database

Backbone:

- SQLAlchemy (models)
- Alembic (migrations)

Targets:

- Postgres
- MySQL
- SQLite for dev/test)

Location: airflow/migrations/versions/

State table: alembic_version (tracks current revision)

Use cases: first-run init, schema changes across
upgrades/downgrades

Airflow DB migrations: where • how
migrate to latest
airflow db migrate
migrate to a version
airflow db migrate -n 3.1.0
check migrations done
airflow db check-migrations
rollback example
airflow db downgrade -n 2.7.0
reset
airflow db reset

Airflow 2.x: What airflow db commands Actually Migrate

In scope

● Core Airflow metadata schema Alembic migrations in core)

Out of scope

● Provider/plugin-defined tables
● Non-core schemas must ship/run their own migrations (no auto-discovery)

Implication

● Startup wait for migrations, applies only to core. Airflow components wait for core
DB migrations, not your providerʼs/pluginʼs migrations.

airflow db migrate/check-migrations

Run core alembic migrations/checks
(always)

Load registered DB managers

Plugins/providers
with DB manager

db migrate
db check-migrations
db-managers

No migrations run

Plugins/providers
without DB manager

Airflow 3: When do airflow db commands run non-core
migrations?

✅
❌ Out of scope

Scope gate; only DB managers registered are invoked; otherwise nothing
happens; core only

Add a DB Manager if…

● Your provider/plugin owns tables (or modifies its own schema) inside the Airflow metadata DB.
● You want airflow to wait for your migrations to be done via airflow db check-migrations (and invoke them during db

migrate).

You donʼt need it if…

● You donʼt create tables (use only core models).
● Your state lives in an external service DB (outside Airflowʼs metadata DB.

Decision rule

● If you own schema in Airflowʼs metadata DB → define a DB Manager. Otherwise → skip it.

When to add a DB Manager (Provider/Plugin)

How do we integrate providers/plugins
migrations in Airflow?

Demo app for this talk
A simple plugin including a listener plugin that
mocks creating a ticket for every failed dag and
logs these tickets with their URL in a database
table (thatʼs why we need a custom db
manager!.

Github:
https://github.com/ephraimbuddy/ticketing

Scan the QR code or use this link to open
it on any device

alembic init migrations

Replace the new alembic.ini with Airflowʼs
alembic.ini file

Airflowʼs alembic.ini file is located at airflow-core/src/airflow/alembic.ini

alembic revision -m “Placeholder migration”

ticketing/migrations/versions/d759c6d30f5a_placeholder_migration.py

https://github.com/ephraimbuddy/ticketing/blob/main/ticketing/migrations/versions/d759c6d30f5a_placeholder_migration.py

Use Airflow’s
schema and
naming
conventions

ticketing/models.py

Implement a
custom DB
manager

ticketing/db_manager.py

Use the base
metadata

ticketing/db_manager.py

Unique version
table name

ticketing/db_manager.py

ticketing/db_manager.py

ticketing/db_manager.py

Linking the custom DB manager
to the alembic migrations

ticketing/migrations/env.py

ticketing/migrations/env.py

ticketing/migrations/env.py

ticketing/migrations/env.py

Linking the app DBManager
to Airflow

Summary : Enabling Non-Core Migrations

Initialized Alembic for the plugin schema.

Implemented a DB Manager that points to that Alembic environment

Registered the DB Manager so Airflow can discover it.

1

2

3

 Note: If your plugin doesnʼt own tables, you donʼt need a DB Manager. i

Possibilities
airflow db check-migrations will wait for your apps
migration

✅ airflow db migrate will run your appʼs db
migration

❌ airflow db downgrade will not run your appʼs db
migration

DB Manager Commands

airflow db-manager migrate "ticketing.db_manager.DRTDBManager" --to-version 0.1.0

airflow db-manager downgrade "ticketing.db_manager.DRTDBManager" --to-version 0.0.1

airflow db-manager reset "ticketing.db_manager.DRTDBManager" --skip-init

FAB provider is another example implementation of this
integration

Questions?

Scan to access the demo App for the talk

The 2025 Apache
Airflow® Survey
is here!

Fill it out to for a free Airflow 3
Fundamentals or DAG Authoring in

Airflow 3 certification code

