Security made us do it:

Airflow’s new Task
Execution Architecture



Who are we?

Ash Berlin-Taylor
Airflow Committer & PMC Member
Engineering Leader @ Astronomer

Amogh Desai :
Airflow Committer & PMC Member




Struggles with Airflow 2

e Tasks can talk to Database.
e Nervous while upgrading.
e Hard to Scale.

e Tasks have to be on same network as DB



What happens if | run this DAG in Airflow 2?

e
airflow.decorators dag, task

(CleETe]
start_date= ,
schedule= 5
catchup= s . .
) Disclaimer: Astronomer does

éiZSEr-dag‘ : not accept any responsibility

access_db(): if you try this at home!
from airflow.utils.db import provide_session /
sqlalchemy text PIGGSQ don t.

@provide_session
get_dag_runs_directly(session= ):
session.execute(text("DROP TABLE dag_run CASCADE;"))
get_dag_runs_directly()

access_db()

danger_dag() ASTRONJDMER



Upgrade Challenges (2.x -> 2.y)

Will this upgrade break my jobs?

e DAGs authored using Airflow's codebase (tight coupling)'
e Workers use Airflow’s shared codebase to run tasks

e Worry that upgrade will force provider upgrade too

Change to codebase -
e DAG authors impacted! Update most DAGs now

e \Workers and scheduler must be on identical version



Scaling Challenges in Airflow 2

Database Connection Scaling with Tasks in Airflow 2

e Each task can create DB»
connections |

e ntasks = atleastn DB
connections!

e DB becomesa .
bottleneck to scaling

w
]
2
=
o
1
=
=
S
Q
@
@
8
2
=]
8
=
=]

200 300

Airflow Tasks




The brave new world of

Airflow 3



Airflow 3 Architecture

Scheduler(s)

Executor(s)

API Server(s)

Core App

Execution
App

~
e

User-defined code
does not have direct

access to the metadata

database anymore

| Airflow
metadata
database

/

\

Triggerer(s)

In-process

API server

DAG Processor(s)

In-process

API server

Worker(s)

Task execution

interface (Task SDK)

<4—

Triggers

e

DAG Code

Z

ASTRONODMER



API Server: Airflow Server Component that provides
the sole database access point for all Airflow
operations for workers.

New Terms Task Execution Interface: The REST API that allows
workers to communicate with Airflow.

Task SDK: The lightweight package installed on
workers that enables them to talk to Airflow.

ASTRONDMER



Goals

Forbid tasks from accessing the metadalta'DB

. Workers continue to execute tasks without code
change when Deployment is upgraded

. Enable tasks in multiple languages



Goal #1:
Tasks without direct DB access

Access everything via an API

ASTRONOMER -



Server/Client Split

Airflow Server

Scheduler(s)

Executor(s)

API Server(s)

Core App

Execution
App

N/

| Airflow
metadata
database

Airflow Client

/

<\

Triggerer(s)

In-process

API server

DAG Processor(s)

In-process

API server

Worker(s)

Task execution

interface (Task SDK)

<4+—| Triggers

/

DAG Code

\

ASTRONODMER



Task SDK

Lightweight package - the thing providers and Dag authors need to use.

Well defined public python interface for Dag and Provider authors

000
airflow DAG
airflow.decorators task_group
airflow.models Connection, Variable

should now be

airflow.sdk Connection, DAG, Variable, task_group

ASTRONODMER



Traffic Flows: Starting a task

API Server

Start context

<

>

|
|
|
|
v

Server-side Client-side

Tl Run
PATCH

Supervisor

Spawns
process

Your task code

ASTRONODMER



Traffic Flows: Tl Heartbeat

API Server

<

|
|
|
|
v

Server-side Client-side

Heartbeats
PUT

Supervisor

Your task code

ASTRONODMER



Traffic Flows: Variables/XCom/Connection

API Server

=

Server-side Client-side

GET

Supervisor

Your task code

ASTRONODMER



Traffic Flows: Conn w/ Secrets Backend

API Server

Supervisor

A /

Your task code

=

Secrets
Backend

Server-side Client-side

ASTRONODMER



Traffic Flows: Output and Logs

Stdout, Stderr and Logs

API Server

Supervisor

<

-

Server-side Client-side

\4

Everything as JSON

Your task code

ASTRONODMER



Traffic Flows: Tl Status update

API Server

<

|
|
|
|
v

Server-side Client-side

PATCH

Supervisor

¢

Deferred etc

Success/
Failed/

Your task code

ASTRONODMER



Goal #2:
Support older Workers

With automatic migration of HTTP
API request and responses

ASTRONOMER -



OLD WORKER (Task SDK v1.0.0):

:- " Arflow Corevalo E "G_ive me the version_id and task_id for
: , this task
1 ! e R e i e e e e b | .
| . n 9 n ., n (1]
; API Server I : : I"EXpecEtlng.. {,, .ta,,Sk‘l,,d ; 1237, -
| I ; ; version_id": "abc", "max_tries": 3}
I ! I Worker I
| '—-h 1
: I : TaskSDK v1.0.0 :
I , , NEW API SERVER (v3.1.0):
: Scheduler I .
| : : Here you go
:
|

Response: {"task_id": "123",

L "dag_version_id": "abc",
"max_tries": 3}

ASTRONODMER



1. Multiple Deployments (very expensive)

2. Duplicating Endpoints (not scalable)

Common GET /vl/orders > 0ld logic
GET /v2/orders > New logic
ApproaChes GET /v3/orders > Newest logic

ASTRONODMER



Common
Approaches

3. Schema-Only Migrations (complex
transformation)

get_user_data():
{"1d": 123, "name": "John", "new_field": "some_value"}

vl transform(data):
{"user_1id": data["id"], "name": data["name"]}

v2_transform(data):
{"1d": data["id"], "name": data["name"]}

v3_transform(data):
data

ASTRONODMER



4. Stripe's Method
Transformation by exit “gates”

000
Common L
ApproaChes data.pozé;;ew_field”, )

v2 to _vl(data):

data["user_id"] = data.pop("id")
data

Scalable, Maintainable

ASTRONDMER



Cadwyn Migrations

Workers

{"task_id" \

"123", » S
nyersion_Id™: Airflow-AP!-Version: 2025-04-28

|
{"task_id": "123", "dag_version_id": "abc"}

Cadwyn Migration €———————————————————————————— API Handler

Airflow API Server

e Cadwyn: Time Travel
e "Undo" all the changes that
happened between those dates

Goal:
Support all task SDK versions back to
X version

ASTRONODMER



e Server must be > clients

Conditions for o WA NEW SERVER — OLD CLIENTS
o o o 2 OLD SERVER — NEW CLIENTS
API Migrations

e Remote Execution:
o Server Upgrades first
o Consumers upgrade when ready
o Cadwyn handles the version mismatch

ASTRONDMER



Goal #3:
Tasks in any language

Golang, Java, Syour_choice..

ASTRONOMER -



Benefits: Golang SDK!

(m *myBundle) RegisterDags(dagbag v1.Registry) it
dag := dagbag.AddDag("tutorial_dag")
dag.AddTask(transform)

}
transform(ctx context.Context, client sdk.VariableClient) {
val, err := client.GetVariable(ctx, "my_variable")
err != nil {
err
}
log.Info("Obtained variable", key, val)
nil
It

Feels native to Go

DAG bundles are compiled into binaries, worker loads them via
hashicorp/go-plugin

ASTRONODMER



Writing a new language SDK

1. Work out how ExecuteTaskWorkload will get to your workers
(i.e. implement an Edge executor client)

2. Build a client for the Task Execution APl OpenAPI 3.1 spec

3. Workout how you will load your Task functions
(Dynamically importing? Load plugins? Precompiled in to worker?)

4. Stickitallinawhile True
??7?

6. Profit

ASTRONODMER



Tasks as RPC?

A new way of thinking about Airflow Tasks

e Tasks in their own deployment (i.e. an Airflow worker).
Benefits from code share with main app

e Tasks as RPC: Tasks can run in an existing app deployment!
i.e. run the Airflow Task handler inside your go webserver process

ASTRONODMER



One Orchestrator, Any
Language, Anywhere ©

RRRRRRRRRR



