
Security made us do it:

Airflow’s new Task
Execution Architecture

Who are we?

Ash Berlin-Taylor
Airflow Committer & PMC Member
Engineering Leader @ Astronomer

Amogh Desai
Airflow Committer & PMC Member
Senior Software Engineer @ Astronomer

Struggles with Airflow 2

● Tasks can talk to Database.

● Nervous while upgrading.

● Hard to Scale.

● Tasks have to be on same network as DB

What happens if I run this DAG in Airflow 2?

Disclaimer: Astronomer does
not accept any responsibility
if you try this at home!
Please donʼt.

Upgrade Challenges (2.x -> 2.y)
Will this upgrade break my jobs?

● DAGs authored using Airflowʼs codebase (tight coupling)

● Workers use Airflowʼs shared codebase to run tasks

● Worry that upgrade will force provider upgrade too

Change to codebase -
● DAG authors impacted! Update most DAGs now

● Workers and scheduler must be on identical version

Scaling Challenges in Airflow 2

● Each task can create DB
connections

● n tasks ⇒ at least n DB
connections!

● DB becomes a
bottleneck to scaling

The brave new world of
Airflow 3

New Terms

API Server: Airflow Server Component that provides
the sole database access point for all Airflow
operations for workers.

Task Execution Interface: The REST API that allows
workers to communicate with Airflow.

Task SDK: The lightweight package installed on
workers that enables them to talk to Airflow.

1. Forbid tasks from accessing the metadata DB

2. Workers continue to execute tasks without code
change when Deployment is upgraded

3. Enable tasks in multiple languages

Goals

Goal #1
Tasks without direct DB access

Access everything via an API

Server/Client Split

Lightweight package – the thing providers and Dag authors need to use.

Well defined public python interface for Dag and Provider authors

Task SDK

should now be

Compat shims exist, don't worry!

Client-sideServer-side

Traffic Flows: Starting a task

API Server
Start context

Supervisor Your task code

Worker

Spawns
process

TI Run
PATCH

Client-sideServer-side

Traffic Flows: TI Heartbeat

API Server Supervisor Your task code
Heartbeats

PUT

Client-sideServer-side

Traffic Flows: Variables/XCom/Connection

API Server Supervisor Your task code
GET

Client-sideServer-side

Traffic Flows: Conn w/ Secrets Backend

API Server Supervisor Your task code

Secrets
Backend

Client-sideServer-side

Traffic Flows: Output and Logs

API Server Supervisor Your task code

Stdout, Stderr and Logs

Task Logs

Everything as JSON

Client-sideServer-side

Traffic Flows: TI Status update

API Server Supervisor Your task code
Success/

Failed/
Deferred etc

PATCH

Goal #2
Support older Workers

With automatic migration of HTTP
API request and responses

Worker

TaskSDK v1.0.0��
Why?

OLD WORKER Task SDK v1.0.0

"Give me the version_id and task_id for
this task"

Expecting: {"task_id": "123",
"version_id": "abc", "max_tries": 3}

Airflow Core v3.1.0

API Server

Scheduler
NEW API SERVER (v3.1.0):

"Here you go"

Response: {"task_id": "123",
"dag_version_id": "abc",
"max_tries": 3}

Common
Approaches

1. Multiple Deployments (very expensive)

2. Duplicating Endpoints (not scalable)

GET /v1/orders → Old logic
GET /v2/orders → New logic
GET /v3/orders → Newest logic

Common
Approaches

3. Schema-Only Migrations (complex
transformation)

Common
Approaches

4. Stripeʼs Method
Transformation by exit “gatesˮ

Scalable, Maintainable

Cadwyn Migrations

● Cadwyn: Time Travel
● "Undo" all the changes that

happened between those dates

Goal:
Support all task SDK versions back to
X version

Conditions for
API Migrations

● Server must be ⩾ clients
○ ✅ NEW SERVER → OLD CLIENTS
○ ❌ OLD SERVER → NEW CLIENTS

● Remote Execution:
○ Server Upgrades first
○ Consumers upgrade when ready
○ Cadwyn handles the version mismatch

Goal #3:
Tasks in any language

Golang, Java, $your_choice…

Benefits: Golang SDK!

Feels native to Go

DAG bundles are compiled into binaries, worker loads them via
hashicorp/go-plugin

Writing a new language SDK

1. Work out how ExecuteTaskWorkload will get to your workers
(i.e. implement an Edge executor client)

2. Build a client for the Task Execution API OpenAPI 3.1 spec

3. Workout how you will load your Task functions
Dynamically importing? Load plugins? Precompiled in to worker?

4. Stick it all in a while True

5. ???

6. Profit

Tasks as RPC?

A new way of thinking about Airflow Tasks

● Tasks in their own deployment (i.e. an Airflow worker).
Benefits from code share with main app

● Tasks as RPC Tasks can run in an existing app deployment!
i.e. run the Airflow Task handler inside your go webserver process

One Orchestrator, Any
Language, Anywhere 🎯

