AIRFLOW
SUMMIT

Semiconductor (Chip) Design Workflow
Orchestration with Airflow

Dheeraj Turaga | Senior Staff Engineer @ Qualcomm
Nicholas Redd | Senior Engineer @ Qualcomm

AIRFLOW.

SUMMIT
Semiconductor
(Chip) Design
Workflow
Orchestration
With Airflow

D heeraj Tu raga | SeniorStaffcap Engineer @ Qualcomm
Nicholas Redd | senior Engineer @ Qualcomm

AIRFLOW.
SUMMIT

About Us
Life Before Airflow
Airflow @ Qualcomm
* Dynamic Celery Workers
» Multiple Executors: Celery + Edge
« Multi DC Architecture
Contributions
Methodologies

We make CPUs!

Qualcomm Oryon CPU - Our Snapdragon SOC Lineup:

Snapdragon

Compute >

The industry leader in performance and power
efficiency.

Snapdragon Snapdragon

8

Elite
Mobile > Automotive >
Transforming performance with the world's fastest Unlocking a new era of automotive intelligence.
mobile CPU.

EDA tools are specialized software used to automate and manage the complex processes of chip design and verification.

EDA tools demand:

* Massive Compute: tasks can run 7+ days,
consume >256 GB RAM, generate 100s of GBs
of output.

* Rigid Vendor Constraints: strict licensing.
environment setup, and version dependencies

* Scale of Orchestration: Thousands of jobs
must be scheduled and managed daily across
multiple sites and compute grids.

Requires Root Privileges — Security risk on multi-user clusters.
No Native Scheduler Integration — Hard to enforce resource limit policies.
OverlayFS Overhead — Slows down |/0-heavy EDA flows (millions of small files).
Limited Shared Memory & Ulimits — Manual tweaks needed; admins restrict flags.
Complex HPC Networking — MPI, Infiniband need extra config.

Unstable Host Identity — Breaks FlexNet licensing.

SLURM/LSF + Singularity

SLURM/LSF = Job Scheduler, Singularity = HPC-friendly container

Runs as Non-Root — Secure for shared HPC environments.

Native Scheduler Hooks — Accurate resource tracking & fair-share scheduling.
Direct Host Filesystem Access — No overlay penalty; ideal for PDKs & scratch.
Inherits Host Limits — /dev/shm and ulimits work out-of-the-box.

Seamless HPC Features — MPI, GPUs, Infiniband supported natively.

Preserves Host Identity — Stable for floating license servers.

“Before there was automation, before there was orchestration...
there was chaos.
And before there was chaos... there was Jenkins.”

The Bad:

« Unstable Executor Nodes: Frequent failures
(resource, network, software, grid) — cascading
regressions failures & delays.

« Fragile Infrastructure: Node failures require manual
recovery; high maintenance overhead.

« Siloed Freestyle Workflows: Hard to share or
generalize methodologies across teams.

« No Version Control for Jobs: Configurations live
only on Jenkins host — risk of loss, no audit trail.

« Poor Scalability for Complex Pipelines: Designed for
simple CI/CD:; struggles with large distributed
workflows.

The Good:

$ script.sh
;“ echo "Hello."
.| Running task..." |

shell script
go brrr

Our Airflow Instance:

* Core services run in Docker container

« Airflow install/code/configs shared Airflow Core

. Services Celery Workers
via NFS ee

API Server
Scheduler Celery Workers

» Celery workers run as LSF jobs

DAG Processor
Triggerer
Webserver
Metadata DB

RabbitMQ

NFS Shared Airflow Install
Contains Airflow code and configs

Spawning Celery Workers: Compute Farm (LSF)

« Single always-on worker leases temporary workers - Q
on multi-day lease ‘ Airflow D

celery__ts> celery__ts>
. Core) <lease>_host1 <lease>_host2
« Temp workers created/shutdown via DAG: T DAG o
I <Jjob_submit__cmd>
Celery airflow celery worker -H
Worker
job --cpus 8 --mem 64GB -- airflow celery worker -H Dynamic Workers

celery_<ts>_<lease> hostw

celery <timestamp>_<lease_hrs>_<hostname>

NFS Shared Airflow Install J

O We (of0) ntri b Uted th iS fO rrem Ote ce | e ry WO rke r Short-lived, lease-based workers; monitored & gracefully decommissioned.
management!
S t r t | Cel yExecut F f
£ Add CLI command to remove all queues from Celery worker + (area:providers | (provider:celery 8 kY T e pache-airflow/stable/e ele
#56195 by dheerajturaga was merged yesterday « Approved
P Arg t
! Enhance Celery CLI with Worker and Queue Management Features (area:providers) (provider:celery gy o S
#51257 by dheerajturaga was merged on Jun 1 « Approved
¥+ Add worker_umask to celery provideryaml + (area:providers | (provider:celery nsubscribe Celery worker from specified queue:
#51218 by dheerajturaga was merged on Jun 1 » Approved tive cele ke
r \ ers

Challenges:
» Data Centeris FULL -> Need more compute

* Compute availability is spread across many DCs
* Need to access Emulation resources

* Need to run on hosts hooked up to custom silicon

Can a single Airflow instance handle
EVERYTHING?

Celery — Local jobs in the same data center
Edge — Remote jobs & special hardware, anywhere!

Why it rocks:

W One Airflow to rule them all
W Global compute orchestration
W No more DC handcuffs

How we do it:

* Permanent Edge Workers in each DC (always-on
gateways)

+ Dynamic Edge Workers spin up on demand

« Smart Routing: Celery for local, Edge for remote

+ Load Balancing across DCs

Use Cases:
Pre-Silicon: Build on HPC, run on emulators
Post-Silicon: Validate on custom boards

Permanent Edge Worker

Permanent Ll Short Lived Edge Worker
Celery Worker £

Short Lived Celery

Worker

!!! = =, On Prem Site - A

Permanent Edge Worker
Main On Prem Site

Short Lived Edge Worker

— By

On Prem Site - B

Permanent Edge
Worker

Short Lived Edge
rker
Custom Silicon

ul-hardware
Firewall

Cloud Site - C

Emulation Hardware

Airflow @ QCOM - Custom Sillicon

L

Airflow Edge Worker running
here*!

*This is a representative image only.

i~ Add revoke_task implementation to EdgeExecutor for task queued timeout support - (areaproviders | (provider:edge

fe

fo

I~

)

) ad

fo

#56240 by dheerajturaga was merged 3 days ago = Approved

Add CLI command to remove all queues from Celery worker { area:providers | (provider:celery

#56195 by dheerajturaga was merged 3 days ago = Approved

Add yellow hover background to enter maintenance icon + | areaproviders | | provider:edge

#5563 1 by dheerajturaga was merged 3 weeks ago = Approved

Add shutdown-all-workers command to Edge CLI v provi provider:edge

#55626 by dheerajturaga was merged 3 weeks ago = Approved

Add queue management Ul buttons for Edge workers v provi provi g

#55625 by dheerajturaga was merged 3 weeks ago = Approved

feat: Add delete button for offline edge workers | areaproviders | (provider:edge

#55529 by dheerajturaga was merged 3 weeks ago = Approved

feat: Add shutdown button for edge workers with confirmation dialog v providers | | provider:edg
#55513 by dheerajturaga was merged 3 weeks ago = Approved
Add confirmation dialog for exit maintenance action in Edge Worker Page +/ | areaproviders | | provider:edge

#55400 by dheerajturaga was merged 3 weeks ago = Approved

Add worker maintenance mode functionality to Edge3 provider Ul | area:providers | (provider:edge

#55301 by dheerajturaga was merged last month = Approved

Fix EdgeWorker multiprocessing pickle error on Windows + | area:providers | (provider:edge

#55284 by dheerajturaga was merged last month = Approved

Add queue and remove queue cli commands for EdgeExecutor v provi provider:edge

#53505 by dheerajturaga was merged on Jul 19 = Approved

Edge list worker cli command to list active job metrics - | area:providers | (provider:edge

#51720 by dheerajturaga was merged on Jun 14 = Approved

I Extend command column in the edge_job table to accomodate more chars - (area:providers | (provider-edge

b

3

b

fo

#51716 by dheerajturaga was merged on Jun 14 = Approved

Enhance Celery CLI with Worker and Queue Management Features | area:providers

#51257 by dheerajturaga was merged on Jun 1 « Approved

Add worker_umask to celery provider.yaml| v (areaproviders | (provider:celery

#51218 by dheerajturaga was merged on Jun 1 « Approved

Support For Edge Worker in Daemon Mode +/ | area:providers | (provider:edge
#50425 by dheerajturaga was merged on May 11 « Approved

Ability to request shutdown of a remote edge worker -/ | areaproviders | (provider-edge

#5078 by dheerajturaga was merged on May 6 « Approved

Extend Edge Worker CLI commands operate on remote edge workers (area:providers

#49915 by dheerajturaga was merged on May 2 + Approved

Minor doc fix in edgeAexecutor + [areaproviders | = kind:documentation ' (provider:edge

#49755 by dheerajturaga was merged on Apr 25 = Approved

View all our contributions here:

provider:celery

provider:edge

Methodologies

Design Verification (DV) is debugging hardware before it's built — to catch costly mistakes

early.

create_rundir
EmptyOperator

Assets v/ success

@

Browse

&

, Task

run_simulation []

checkout_design generate_design _filelist

EmptyOperator EmptyOperator

v/ success Vv success

Q_ Search Dags Ctrl > Trigger

Options “

build_simulation run_simulation [5]
EmptyOperator @task

Vv success v success

RTL power estimation is simulating the chip’s power efficiency using its design plans

before fabrication.

Dag , Dag Run

example_rtl_power_estimation : -09-3 :29:
[@) le_rtl i 2025-09-30 04:29:02

oo
oo

Q, Search Dags Ctrlk

K
T

> Trigger

Options " v

block_C
Task Group

v success

create_rundir checkout_design build_simulation
EmptyOperator Empt; ator EmptyOperator
Assets

v success success

1

run_simulation [5]
@task

 success

]

generate_waveforms
EmptyOperator

v success

- 3 Tasks

calculate_power
EmptyOperator

v success

generate_foundry_library_db
—| EmptyOperator
~

@

Browse

i

generate_design_filelist
EmptyOperator

' success

block A

Task Group

+ 3 Tasks

v success

block_B

Task Group

+ 3 Tasks

v success

Physical Design is the process of converting a chip’s logical design into a layout that
can be manufactured on silicon..

Dag . Dag Run
@ example_physical_design workflow ~ 2025-09-30 04:43:28

Q_ Search Dags Ctrl+K > Trigger

Options v

Unit testing an Airflow codebase:

‘airflow dags list-import errors’
is not enough!
No official Pytest support &

Custom Pytest plugin ->
apache-airflow-devel-common ->

pytest_plugin.py source code

@pytest.mark.db_test
@pytest.mark.smoke
@pytest.mark.execution_timeout(3000)
def test_integrity(dags_path):

Replaces “airflow dags list-import-errors”

dag_bag = DagBag(

dag_folder=dags_path, include_examples=False, read_dags_from db=False
)
assert not dag_bag.import_errors, "DAG import errors are present : ("
slowpokes = [

s for s in dag_bag.dagbag stats if s.duration > duration(seconds=10)
]

assert not slowpokes, "Slowpokes are present :("

https://pypi.org/project/apache-airflow-devel-common/
https://github.com/apache/airflow/blob/main/devel-common/src/tests_common/pytest_plugin.py

Pytest Plugin for Airflow

@pytest.mark.db_test
@pytest.mark.execution_timeout(300)

def test_a_dag(dag_maker, session, default_args): class TestCustomOperator:
Test a DAG! @pytest.mark.db_test
non def test_templated fields(self, create_task_instance_of_operator, session):
DAG_CFG = { ti = create_task_instance_of_operator(
something relevant CustomOperator,
} # Templated fields
with dag_maker(bash_command='echo "{{ dag_run.dag_id }}"',
dag_id:"test_a_dag“, env:{" FOO" : "{{ ds }}"},
bundle_name="dags-folder", cwd="{{ task.dag.folder }}",

default_args=default_args,

Oth t
params=BASE_PARAMS (DAG_CFG), 'er“parame - " o
R ion==iicn dag_id="test_templated_ fields_dag",

): task_id="test_templated_fields_task",
session=session,

dr = dag_maker.create_dagrun(run_type=DagRunType.MANUAL))

for ti in dr.get_task_instances(context = ti.get_template_context(session=session)
session=session ti.render_templates(context=context)

): # Mimic the specific order the scheduling would run the tests. task: CustomOperator = ti.task

ti.run(session=session)

assert ti.state == TaskInstanceState.SUCCESS, f"{ti} failed!"
dr.update_state(session=session)
assert dr.state == DagRunState.SUCCESS, f"{dr} failed!"
more asserts

assert task.bash_command.endswith('echo "test_templated_fields_dag"")
assert task.cwd == Path(__file_).absolute().parent.as_posix()

Shell Operators:

« Source global shell .rc file

* Modify SubprocessHook to pass
entire stdout/output log path

« Custom pre/post-processing via
pre_execute/post_execute

« Enables smart retries + scraping
XComs from shell output

class SubprocessHook(BaseHook): <- class CustomHook(SubprocessHook)
®

def run_command(
self,
command: list[str],
env: dict[str, str] | None = None,
output_encoding: str = "utf-8",
cwd: str | None = None, <-Add optional output_log
) -> SubprocessResult:

class BashOperator(BaseOperator): <- class CustomOperator(BashOperator)
- <- def execute() uses CustomHook
def __init_ (
self,

*
>

bash_command: str | ArgNotSet, <- Prepend env setup commands
env: dict[str, str] | None = None,
append_env: bool = False,
output_encoding: str = "utf-8",
skip_on_exit_code: int | Container[int]
cwd: str | None = None,
**kwargs,
) -> None:

Generalizing Workflows:

DAG Factories but very different!
Use symlinks to DAG templates +
YAML dictionary configuration
Enforce methodology with a unit
test!
.airflowignore:

« **/templates/

« **/*_template.py

my_dag/
|— cfg.yml
|— dag.py -> templates/dag_template.py
L templates/
L dag_template.py

@pytest.mark.db_test
@pytest.mark.smoke
def test_symlink methodology(dags_path):

Enforce my rules!

for p in dags_path.rglob("*"):
if p.is_symlink():

check if broken link

H

check for adjacent cfg.yml

https://www.astronomer.io/docs/learn/dag-factory

Questions?

Dheeraj Turaga
turaga@qti.qualcomm.com

Nick Redd
redd@qti.qualcomm.com

Like what we do?

COME JOIN US!
WE ARE HIRING

¥ Airflow

Infrastructure &
Automation Engineer -
Silicon Design

Apply Here!

9 Qualconm

Snapdragon

