
Semiconductor (Chip) Design Workflow
Orchestration with Airflow

Dheeraj Turaga | Senior Staff Engineer @ Qualcomm
Nicholas Redd | Senior Engineer @ Qualcomm

Semiconductor (Chip) Design Workflow
Orchestration with Airflow

Dheeraj Turaga | Senior Staff Engineer @ Qualcomm
Nicholas Redd | Senior Engineer @ Qualcomm

Agenda
• About Us
• Life Before Airflow
• Airflow @ Qualcomm

• Dynamic Celery Workers
• Multiple Executors: Celery + Edge
• Multi DC Architecture

• Contributions
• Methodologies

About Us - Qualcomm

We make CPUs!

Qualcomm Oryon CPU – Our Snapdragon SOC Lineup :

About Us – EDA Tools

EDA tools demand:

• Massive Compute: tasks can run 7+ days,
consume >256 GB RAM, generate 100s of GBs
of output.

• Rigid Vendor Constraints: strict licensing,
environment setup, and version dependencies

• Scale of Orchestration: Thousands of jobs
must be scheduled and managed daily across
multiple sites and compute grids.

 EDA tools are specialized software used to automate and manage the complex processes of chip design and verification.

EDA in Docker?
Requires Root Privileges → Security risk on multi-user clusters.

No Native Scheduler Integration → Hard to enforce resource limit policies.

OverlayFS Overhead → Slows down I/O-heavy EDA flows (millions of small files).

Limited Shared Memory & Ulimits → Manual tweaks needed; admins restrict flags.

Complex HPC Networking → MPI, Infiniband need extra config.

Unstable Host Identity → Breaks FlexNet licensing.

SLURM/LSF + Singularity
SLURM/LSF = Job Scheduler , Singularity = HPC-friendly container

Runs as Non-Root → Secure for shared HPC environments.

Native Scheduler Hooks → Accurate resource tracking & fair-share scheduling.

Direct Host Filesystem Access → No overlay penalty; ideal for PDKs & scratch.

Inherits Host Limits → /dev/shm and ulimits work out-of-the-box.

Seamless HPC Features → MPI, GPUs, Infiniband supported natively.

Preserves Host Identity → Stable for floating license servers.

Life Before Airflow
“Before there was automation, before there was orchestration…
there was chaos.
And before there was chaos… there was Jenkins.”

The Bad:

• Unstable Executor Nodes: Frequent failures
(resource, network, software, grid) → cascading
regressions failures & delays.

• Fragile Infrastructure: Node failures require manual
recovery; high maintenance overhead.

• Siloed Freestyle Workflows: Hard to share or
generalize methodologies across teams.

• No Version Control for Jobs: Configurations live
only on Jenkins host → risk of loss, no audit trail.

• Poor Scalability for Complex Pipelines: Designed for
simple CI/CD; struggles with large distributed
workflows.

Life Before Airflow - Jenkins

The Good:

Life Before Airflow - Jenkins

Our Airflow Instance:
• Core services run in Docker container
• Airflow install/code/configs shared

via NFS
• Celery workers run as LSF jobs

Airflow @ QCOM

Spawning Celery Workers:
• Single always-on worker leases temporary workers

on multi-day lease
• Temp workers created/shutdown via DAG:

job --cpus 8 --mem 64GB -- airflow celery worker -H
celery_<timestamp>_<lease_hrs>_<hostname>

• We contributed this for remote celery worker
management!

Dynamic Celery Workers

Challenges:
• Data Center is FULL -> Need more compute
• Compute availability is spread across many DCs
• Need to access Emulation resources
• Need to run on hosts hooked up to custom silicon

Can a single Airflow instance handle
EVERYTHING?

How do we scale up from here???

Celery → Local jobs in the same data center
Edge → Remote jobs & special hardware, anywhere!

Why it rocks:
✅ One Airflow to rule them all
✅ Global compute orchestration
✅ No more DC handcuffs

How we do it:
• Permanent Edge Workers in each DC (always-on

gateways)
• Dynamic Edge Workers spin up on demand
• Smart Routing: Celery for local, Edge for remote
• Load Balancing across DCs

Use Cases:
Pre-Silicon: Build on HPC, run on emulators
Post-Silicon: Validate on custom boards

Multi Executors: Celery + Edge3

Airflow @ QCOM – Multi-DC Architecture

Airflow @ QCOM – Custom Sillicon
Airflow Edge Worker running

here*!

*This is a representative image only.

Edge/Celery Contributions

View all our contributions here:

Methodologies

Chip Design Workflow – Examples (DV)
Design Verification (DV) is debugging hardware before it's built — to catch costly mistakes
early.

Chip Design Workflow – Examples (Power Estimation)

RTL power estimation is simulating the chip’s power efficiency using its design plans
before fabrication.

Chip Design Workflow – Examples (Physical Design)

Physical Design is the process of converting a chip’s logical design into a layout that
can be manufactured on silicon..

Unit testing an Airflow codebase:
• ‘airflow dags list-import errors’

is not enough!
• No official Pytest support ☹
• Custom Pytest plugin ->

apache-airflow-devel-common ->
pytest_plugin.py source code

Pytest Plugin for Airflow

https://pypi.org/project/apache-airflow-devel-common/
https://github.com/apache/airflow/blob/main/devel-common/src/tests_common/pytest_plugin.py

Pytest Plugin for Airflow

Shell Operators:
• Source global shell .rc file
• Modify SubprocessHook to pass

entire stdout/output log path
• Custom pre/post-processing via

pre_execute/post_execute
• Enables smart retries + scraping

XComs from shell output

Custom Shell Operators

<- Add optional output_log

<- Prepend env setup commands

<- def execute() uses CustomHook

<- class CustomHook(SubprocessHook)

<- class CustomOperator(BashOperator)

Generalizing Workflows:
• DAG Factories but very different!
• Use symlinks to DAG templates +

YAML dictionary configuration
• Enforce methodology with a unit

test!
• .airflowignore:

• **/templates/
• **/*_template.py

DAG Templates

https://www.astronomer.io/docs/learn/dag-factory

Questions?
Dheeraj Turaga
turaga@qti.qualcomm.com

Nick Redd
redd@qti.qualcomm.com

Apply Here!

