
The Secret to 
Airflow’s 
Evergreen Build
CI/CD magic

Amogh Desai, Jarek Potiuk, Pavan Kumar



Jarek Potiuk

Apache Airflow PMC member & committer

Member of Apache Software Foundation 

Member of ASF Security Committee 

Amogh Desai

Apache Airflow PMC member & committer

Senior Software Engineer at Astronomer

Pavan Kumar Gopidesu

Apache Airflow committer & Member The 
Apache Software Foundation

Technical Lead at Tavant



Agenda

● Why CI?

● Past

● Present

● Future



Why CI ?



ASF 
Incubator

ASF
Top Level 
Project

Airflow 2.0
Airflow 2.10

Airflow 
3.0

Airflow 
3.1





Past



More than 5 years of evolution

● Travis CI -> GitHub Actions
● Basic assumptions:

○ Use CI image (700+ dependencies)
○ Breeze commands as a driver
○ CI jobs reproducible locally

● Initially Bash
● Rewritten to Python via Outreachy Internship
● Switched to uv last year



Why so complex?

● Airflow unit tests (DB, non, DB, lowest deps)
● Provider unit tests (DB, non-DB, back-compatibility, lowest deps)
● Integration tests
● Docker image build tests
● Docker compose tests
● Helm unit tests
● Helm Chart + K8S tests + Docker compose tests 
● Constraints generation
● …





It’s a kind of magic (it’s all about people)

● Many, Many, Many moving parts and workflows

● Jarek as original author and (SPOF)

● Python rewrite with Outreachy interns (Bowrna and Edith)

● More people involved over last year #internal-airflow-ci-cd
○ Amogh, Pavan, Jens, Bugra, Aritra, Elad, Ash, Kaxil, Wei Lee

○ …. (many more)



Present



We didn’t just improve CI/CD for fun, but we 
did it to prepare for Airflow 3!



Story Time: The Big Picture

Providers – Now to 
consume from task 
SDK instead of core

Airflowctl – kubectl 
but for airflow

Shared Library – 
Common code 
(timezone, secrets 
masker, logging)



Community Driven Beginning

Big Goals need a Strong Community!

● MyPy Upgrade (1.9.0 => 1.16.1)

○ Cleaning up mypy ignores

● Update providers to use BaseHook 

& BaseOperator from task SDK

● Improving UI / API filtering options



Community Stats



The Challenge

Tons of PRs, lot of active contributors, massive architectural change…

How do we know what’s failing?



Scheduled Runs 

● CI-AMD: 28 1,7,13,19 * * *
● CI-ARM: 28 3,9,15,21 * * *



Slack Bot for Failures

● Runs 2 times a day: 6 
AM and 5 PM UTC

● Notifies on Slack: 
#internal-airflow-ci-cd

● Started with: Main 
branch only

● Realized: Need release 
branch too



Example 
Improvements



GitHub Rate Limit Crisis

May 2025:
● 60 requests / hr for 

unauthenticated 
requests

● Many workflows use 
Github for various 
things

● Random Failures



GitHub Rate Limit Crisis

Workflow scripts:

● get_devel_deps, entrypoint_ci …
● 20+ scripts using raw.githubusercontent.com

● Switch to Github API
● Systematic Fix across 20+ files / as needed

http://raw.githubusercontent.com


Recap of Airflow 3 Architecture

● Task SDK has an API 
client to talk to API 
server

● API Server hosts 
execution API



Hidden Problem



Hidden Problem



Hidden Problem



Hidden Problem

Bug came in during 3.0.3rc4





Task SDK Integration Testing





https://docs.google.com/file/d/1nZwDBNQL1jQ13Zg75abh6Z0unYLhmqj2/preview


Making Processes 
Robust



Beyond Unit Tests: E2E DAG Testing In CI

● Does all integrations between airflow components working?

● Is example dags working?

● Remote logging broken? 



Test execution In CI



Automated Cherry-Picking: Seamless PR Propagation 
Across Branches

1. Propagate changes to branches seamlessly 

2. Over 300 + developers working across different components

3. Enhance team productivity



Automated Cherry-Picking: Seamless PR Propagation 
Across Branches



From Manual to Automated: Documentation Publishing 
Journey

1. Apache Airflow site 20+ GB

2. A lot of manual efforts for release managers to publish docs

3. Contributions to Airflow site is minimal

4. Hard to patch adhoc documentation changes



Current docs publish process



Some more things



 Significant refactors / changes done over the year

● Securing GitHub Actions -> Get rid of “pull request target”

● Switching builds to uv

● Implementing uv workspace support 

● Switching to prek as pre-commit runner

● Dependency versions check



Future



What’s next?

● UV lock support for constraints generation

● Considering splitting Providers - and maybe more - repos

● Apache Trusted Releases Platform

● Trusted Publishing to PyPI

● e2e tests for UI



Summary

● CI is needed!

● People are most important

● CI needs you!



Questions?


