
Democratized data workflows at 
scale

Emil Todorov

Mihail Petkov



Our agenda for today

● Why Airflow?

● Architecture

● Security

● Execution environment in Kubernetes





FT is a data driven organization



Time for a change





Why Airflow?



Dynamic
Extendable

Scalable

Elegant



Architecture



 PostgreSQL

Scheduler
Pod

Web Server Pod

Worker
Pod

Worker
Pod

Worker
Pod

Architecture



User

Business

Tech



Airflow will be used by multiple teams



Team 1 Team 2 Team N

Airflow requirements





Teams will share Airflow resources



Team 1 DAGs Team 2 DAGs Team N DAGs

Team 1 Team 2 Team N

Team 1 
Connections

Team 2 
Connections

Team N 
Connections

Airflow shared components



Teams will share Kubernetes resources



Team 1 
Worker Pod

Team N 
Worker Pod

Team 2
Worker Pod

Kubernetes shared components





How to evolve this architecture?





Airflow instance per team



One instance components





Instance per team problems

● Adding new team is hard

● Maintaining environment per team is difficult

● Releasing new features is slow

● Resources are not fully utilised

● Total cost increase





Another way?



Multitenancy



Multiple independent instances in a shared environment



Multi-tenant components



How to make AWS multi-tenant?



IAM Security

Team 1 IAM user

Team 2 IAM user

Team N IAM user



IAM Security

Team 1 IAM user

Team 2 IAM user

Team N IAM user



How to enhance Kubernetes?



Team N namespaceTeam 2 namespaceTeam 1 namespace

Service Account

Resource Quota

System namespace

Airflow scheduler Airflow web server

Team 1 
worker 

Pod

Team 1 
worker 

Pod

Service Account

Resource Quota

Team 2 
worker 

Pod

Team 2 
worker 

Pod

Service Account

Resource Quota

Team 3 
worker 

Pod

Team 3 
worker 

Pod



How to improve PostgreSQL?



CHANGES



How to extend Airflow?



Redesign Airflow source code



Redesign Airflow source code

● Module per team



Redesign Airflow source code

● Module per team

● Connections per team



Redesign Airflow source code

● Module per team

● Connections per team

● Extend hooks, operators and sensors



Redesign Airflow source code

● Module per team

● Connections per team

● Extend hooks, operators and sensors

● Use airflow_local_settings.py



Redesign repository structure

Airflow system code 
repository

Team 1 DAG repository

Team 2 DAG repository

Team N DAG repository

Airflow repository



Execution environment in Kubernetes



LoadTransformExtract

ETL

DATA SOURCE 1

DATA SOURCE 2

AGGREGATIONS DATA DESTINATION



LoadTransformExtract

Extract

DATA SOURCE 1

DATA SOURCE 2

AGGREGATIONS DATA DESTINATION



LoadTransformExtract

Load

DATA SOURCE 1

DATA SOURCE 2

AGGREGATIONS DATA DESTINATION



Transform?



Example workflow

Task 1

Task 2

Task 3 Task 4



Language agnostic jobs

Cross task data access

Our goals



KubernetesPodOperator



Language agnostic jobs

Cross task data access

Our goals



Unique storage pattern

● Unique team name from the multitenancy

● Unique DAG id

● Unique task id per DAG

● Unique execution date per DAG run

/{team}/{dag_id}/{task_id}/{execution_date}



The power of extensibility



ExecutionEnvironmentOperator

ExecutionEnvironmentOperator

PRE EXECUTE
KUBERNETES 

POD OPERATOR 
EXECUTE

POST EXECUTE

KUBERNETES 
POD OPERATOR 

EXECUTE

KubernetesPodOperator



Configurable cross task data dependencies



Example input configuration



Example output configuration



Pre-execute

● Bootstrap the environment

● Enrich the configuration

● Export the configuration to the execution environment pod

KUBERNETES 
POD OPERATOR 

EXECUTE
PRE EXECUTE



Post-execute

● Handle the execution

● Clear all bootstraps

● Deal with the output

KUBERNETES 
POD OPERATOR 

EXECUTE
POST EXECUTE



POC with AWS S3 as intermediate storage

Task 1

Task 2

Task 3 Task 4



Is this efficient?

Multiple downloads and uploads

Single processing power

Always loading the data in memory



How to evolve the execution environment?

Remove unnecessary data transfers

Parallelize the processing

Provide hot data access



Shared file system



Kubernetes persistent volume

Task 1 Task 2 Task 3 Task 4



Kubernetes persistent volume with EFS

Task 1 Task 2 Task 3 Task 4



So far so good

Remove unnecessary data transfers

Parallelize the processing

Provide hot data access



One worker?





Benefits from Spark

● Runs perfectly in Kubernetes

● Supports many distributed storages

● Allows faster data processing

● Supports multiple languages

● Easy to use



SparkExecutionEnvironmentOperator

PRE EXECUTE
KUBERNETES 

POD OPERATOR 
EXECUTE

POST EXECUTE

SETUP SPARK 
ENVIRONMENT

RUN SPARK 
BASED IMAGE

CLEAR SPARK 
BASED 

RESOURCES



Spark execution environment

Spark driver

Spark workers



Our current state

Remove unnecessary data transfers

Parallelize the processing

Provide hot data access



Hot & cold data

HOT DATA COLD DATA

Task 1 Task 2 Task 3 Task 4



Alluxio

HOT DATA COLD DATA

Task 1 Task 2 Task 3 Task 4



Thank you!

#apacheairflow


