
What’s new in
Airflow 2

Apache Airflow Online Summit
8th of July 2020

Daniel Imberman
Committer

Senior Data Engineer @ Astronomer

Tomek Urbaszek
Committer

Software Engineer @ Polidea

Kamil Breguła
Committer

Software Engineer @ Polidea

Who are we?

Tomek Urbaszek
Committer, PMC Member

Software Engineer @ Polidea

Kamil Breguła
Committer, PMC member

Software Engineer @ Polidea

Ash Berlin-Taylor
Committer, PMC member

Airflow Engineering Lead @ Astronomer

Daniel Imberman
Committer, PMC Member

Senior Data Engineer @ Astronomer

Kaxil Naik
Committer, PMC member

Senior Data Engineer @ Astronomer

Jarek Potiuk
Committer, PMC member

Principal Software Engineer @ Polidea

Announcements

Tomek Urbaszek
Committer, PMC Member

Software Engineer @ Polidea

Kamil Breguła
Committer, PMC member

Software Engineer @ Polidea

Daniel Imberman
Committer, PMC Member

Senior Data Engineer @ Astronomer

New PMC members

QP Hou
Committer

Senior Engineer @ Scribd

New committer
Talk: Teaching an old DAG new tricks
Friday July 10 th, 5 am UTC

“Ask Me Anything” session with Airflow PMCs

● Asia friendly time-zone

● Thursday 11 pm PDT / Friday 6 am UTC

● Hosted by Bangalore Meetup

● BYO questions

High Availability

Scheduler High Availability
Goals:

● Performance - reduce task-to-task schedule "lag"

● Scalability - increase task throughput by horizontal scaling

● Resiliency - kill a scheduler and have tasks continue to be scheduled

Scheduler High Availability: Design
● Active-active model. Each scheduler does everything

● Uses existing database - no new components needed, no extra operational
burden

● Plan to use row-level-locks in the DB (SELECT … FOR UPDATE)

● Will re-evaluate if performance/stress testing show the need

Example HA configuration

Scheduler High Availability: Tasks
● Separate DAG parsing from DAG scheduling ✔

This removes the tie between parsing and scheduling that is still present

● Run a mini scheduler in the worker after each task is completed ✔

A.K.A. "fast follow". Look at immediate down stream tasks of what just finished and see what we can
schedule

● Test it to destruction - In progress

This is a big architectural change, we need to be sure it works well.

Measuring Performance
Key performance we define as "Scheduler lag":

● Amount of "wasted" time not running tasks

● ti.state_date - max(t.end_date for t in upstream_tis)

● Zero is the goal (we'll never get to 0.)

● Tasks are "echo true" -- tiny but still executing

Preliminary performance results
Case: 100 DAG files | 1 DAG per file | 10 Tasks per DAG | 1 run per DAG

Workers: 4 | Parallelism: 64

1.10.10: 54.17s (σ19.38) Total runtime: 22m22s

HA branch - 1 scheduler: 4.39s (σ1.40) 1m10s

HA branch - 3 schedulers: 1.96s (σ0.51) Total runtime: 48s

Preliminary performance results
Case: 1 Dag File | 1 Dag Per File | 20 Tasks per DAG | 1000 runs per DAG

Workers: 30 | Parallelism: 40960 | Default pool size 40960

1.10.10: 42.14s (σ7.06) Total runtime: 1h 30m 14s

HA branch - 1 scheduler: 0.68s (σ0.19) Total runtime: 18m 51s

HA branch - 3 schedulers*: 1.54s (σ1.79) Total runtime: 12m 52s

DAG Serialization

Dag Serialization

Dag Serialization (Tasks Completed)
● Stateless Webserver: Scheduler parses the DAG files, serializes them in JSON format & saves

them in the Metadata DB.

● Lazy Loading of DAGs: Instead of loading an entire DagBag when the Webserver starts we only
load each DAG on demand. This helps reduce Webserver startup time and memory. This
reduction in time is notable with large number of DAGs.

● Deploying new DAGs to Airflow - no longer requires long restarts of webserver (if DAGs are baked in
Docker image)

● Feature to use the “JSON” library of choice for Serialization (default is inbuilt ‘json’ library)

● Paves way for DAG Versioning & Scheduler HA

Dag Serialization (Tasks In-Progress for Airflow 2.0)
● Decouple DAG Parsing and Serializing from the scheduling loop.

● Scheduler will fetch DAGs from DB

● DAG will be parsed, serialized and saved to DB by a separate component
“Serializer”/ “Dag Parser”

● This should reduce the delay in Scheduling tasks when the number of DAGs
are large

DAG Versioning

Dag Versioning
Current Problem:

● Change in DAG structure affects viewing previous DagRuns too
● Not possible to view the code associated with a specific DagRun
● Checking logs of a deleted task in the UI is not straight-forward

Dag Versioning (Current Problem)

Dag Versioning (Current Problem)

New task is shown in Graph View for older DAG Runs too with “no status”.

Dag Versioning
Current Problem:

● Change in DAG structure affects viewing previous DagRuns too
● Not possible to view the code associated with a specific DagRun
● Checking logs of a deleted task in the UI is not straight-forward

Goal:
● Support for storing multiple versions of Serialized DAGs
● Baked-In Maintenance DAGs to cleanup old DagRuns & associated

Serialized DAGs
● Graph View shows the DAG associated with that DagRun

Performance Improvements

Components performance improvements
● Focus on the current code

○ Reviews each components in turn
● Tools supporting performance tests - perf_kit

Avoid loading DAGs in the main scheduler loop

Limit queries count

DagFileProcessor:
When we have one DAG file with 200 DAGs, each DAG with 5 tasks:

Before After Diff

Average time: 8080.246 ms 628.801 ms -7452 ms (92%)

Queries count: 2692 5 -2687 (99%)

Celery Executor:
When we have one DAG file with 200 DAGs, each DAG with 5 tasks:

Postgres Redis

Before After Before After

Average time 3.1 s 27.825 ms 778.557 ms 3.417 ms

Queries count 5000 1 5000 1

How to avoid regression?

REST API

API: follows Open API 3.0 specification
Outreachy interns

Ephraim Anierobi

Omair Khan

API development progress

Dev/CI environment

CI environment
● Moved to GitHub Actions

○ Kubernetes Tests ✔

○ Easier way to test Kubernetes Tests locally ✔

● Quarantined tests
○ Fixing the Quarantined tests ✔

● Thinning CI image
○ Moved integrations out of the image ✔

● Future: Automated System Tests (AIP-21)

Dev environment
● Breeze

○ unit testing ✔

○ package building ✔

○ release preparation ✔

○ kubernetes tests ✔

○ refreshed videos ✔

● Code Spaces / VSCode

Backport Packages ✔

● Bring Airflow 2.0 providers to 1.10.* ✔

● Packages per-provider ✔

● 58 packages (!) ✔

● Python 3.6+ only(!) ✔

● Automatically tested on CI ✔

● Future
○ Automated System Tests (AIP-4)

○ Split Airflow (AIP-8)?

Talk: Migration to Airflow backport providers, Anita Fronczak

Thursday July 16th, 4 am UTC

Support for Production
Deployments

Production Image
● Beta quality image is nearly ready ✔

● Started with “bare image” ✔

● Listened to use cases from users ✔

● Integration with Helm Chart ✔

● Implemented feedback ✔

● Docker Compose

Talk, Production Docker image for Apache Airflow

Jarek Potiuk, Tuesday July 14th, 5 am UTC

What’s new in
Airflow + Kubernetes

KEDA Autoscaling

KubernetesExecutor

KubernetesExecutor

KubernetesExecutor

KubernetesExecutor vs. CeleryExecutor

KEDA Autoscaling

● Kubernetes Event-driven Autoscaler
● Scales based on # of RUNNING and QUEUED tasks in PostgreSQL backend

KEDA Autoscaling

KEDA Autoscaling

KEDA Autoscaling

KEDA Queues

● Historically Queues were expensive and hard to allocate
● With KEDA, queues are free! (can have 100 queues)
● KEDA works with k8s deployments so any customization you can make in a

k8s pod, you can make in a k8s queue (worker size, GPU, secrets, etc.)

KubernetesExecutor
Pod Templating from

YAML/JSON

KubernetesExecutor Pod Templating

● In the K8sExecutor currently, users can modify certain parts of the pod, but
many features of the k8s API are abstracted away

● We did this because at the time the airflow community was not well
acquainted with the k8s API

● We want to enable users to modify their worker pods to better match their
use-cases

KubernetesExecutor Pod Templating

● Users can now set the pod_template_file config in their
airflow.cfg

● Given a path, the KubernetesExecutor will now parse the yaml
file when launching a worker pod

● Huge thank you to @davlum for this feature

Official Airflow Helm Chart

Helm Chart

● Donated by astronomer.io.
● This is the official helm chart that we have used both in our

enterprise and in our cloud offerings (thousands of deployments
of varying sizes)

● Helm 3 compliant
● Users can turn on KEDA autoscaling through helm variables
● “helm install apache/airflow”

Helm Chart

● Chart will cut new releases with each airflow release
● Will be tested on official docker image
● Significantly simplifies airflow onboarding process for

Kubernetes users

Functional DAGs

Functional DAGs

➔ PythonOperator boilerplate code

➔ Define separately:

◆ order relation

◆ data relation

➔ Writing jinja strings by hand

Functional DAGs

Data and order relationship are same!

And works for all operators

Functional DAGs

AIP-31: Airflow functional DAG definition

Example: store and retrieve DataFrames on
GCS or S3 buckets without boilerplate code

Find out more:
AIP-31: Airflow functional DAG definition

by Gerard Casas Saez

10th of July

Data and order relationship are same!

And works for all operators

➔ Easy way to convert a function to
an operator

➔ Simplified way of writing DAGs

➔ Pluggable XCom Storage engine

https://airflowsummit.org/program/#abs-f2

Smaller changes

Other changes of note
● Connection IDs now need to be unique (#8608)

It was often confusing, and there are better ways to do load balancing

● Python 3 only ✔

Python 2.7 unsupported upstream since Jan 1, 2020

● "RBAC" UI is now the only UI ✔

Was a config option before, now only option. Charts/data profiling removed due to security risks

https://github.com/apache/airflow/issues/8608

Road to Airflow 2.0

When will Airflow 2.0 be available?

Airflow 2.0 – deprecate, but (try) not to remove
● Breaking changes should be avoided where we can – if upgrade is to difficult

users will be left behind

● Release "backport providers" to make new code layout available "now":

● Before 2.0 we want to make sure we've fixed everything we want to remove
or break.

pip install apache-airflow-backport-providers-aws \
 apache-airflow-backport-providers-google

How to upgrade to 2.0 safely
● Install the latest 1.10 release

● Run airflow upgrade-check (doesn't exist, yet #8765)

● Fix any warnings

● Upgrade Airflow

https://github.com/apache/airflow/issues/8765

Thank you!

Time for Q & A

