
Pipelines on Pipelines:
Creating Agile CI/CD Workflows
for Airflow DAGs

By Victor Shafran
CPO at databand.ai

About Me
● Founder and CPO at Databand.ai
● Background in Machine Learning
● Working with data from 2008

● In my spare time:
○ Proud father of 2 daughters.
○ Run, Hike

My Nightmares 😱

● Junior Engineer push new code -> Spark cluster stalled.
● Senior Engineer push new code -> Overwrite production partition. Took 24

hours to recreate.
● New Spark Operator introduced new version of JAR, the rest of DAGs has failed.

Ruined a weekend while discovering and fixing
● Partner change data format. Discovered after 3 month

I had this kind of issues daily ….

● But, I do not want to spent all my money on sleeping pills 😄
● I also do not want my weekend ruined 🏕
● -> I want to create an environment where every change can be tested end to end

CI/CD pipeline for my DAGs

What is CI/CD

Dev Staging Production

● Integration
● Stress
● Regressions

CI/CD Pipeline == End to End Automation

CI/CD for Data DAGs. Spark Operator

● Spark is a de-facto standard in Data Processing
● Spark - A good example of Data intensive operator

(applicable for ..PythonOperator, …)
● Spark is the most used tool by Airflow Community:

○ Spark Operator,
○ EmrStep Operator,
○ Dataproc Operator,
○ Databricks Operator

CI/CD

● Business Logic
● DAG code - is it wiring or

business logic?
● Testing DAG structure...

We want CI/CD → running END TO END!

SparkSubmitOperator

● Spark Cluster selector (conn_id)
● Spark Job Configuration

○ Python/Java Dependencies
○ Resources

● Spark CLI

Execution Isolation: Cluster Environments
● Production - final code
● Staging

○ Multiple Version
○ Custom Resources

● → Parametrize JAR/PY Locations
● → For example, use git commit

Rendered Operator Example

What about Data?
No batteries included!

ci_234

ci_aef

Requirements
for Data intensive DAG CI/CD
● Data inputs/outputs isolation for every CI/CD cycle

○ You want every feature in separate area,
○ Sometime you don’t want to start every time from scratch

● No unexpected side effects (people connects jobs to different systems/DB/Files)

● Being able to inject different data into your pipeline (small/big/production/errors)

prod

stage

ci_ab1

ci_bc

ci_ab1

stage

Simple: Jinja + xCom

Library of Jinja Macros

● Create your own JINJA plugin
● Register it to Airflow macros JINJA framework

Custom Operator

Benefits:
● Check inputs before running
● Serialize outputs automatically
● Automatic wiring of Task

-> Full control over inputs and outputs

Now you can!
● Run iterations on CI/CD

● Validate DAGS with different DATA

● Inject data with errors! (Chaos Monkey for Data!)

● Reuse Same clusters for different versions

● Enable End Users to run Regressions on their own!

● Multiple REGRESSIONS at all stages(dev,int,stg,prd) -> Successful CI/CD process!

References and Next Steps

● AIP-31: The initial solution

● AIP-<> More to come

● dbnd-airflow - extension that does data management on it’s own

https://github.com/databand-ai/dbnd

Recap

What’s real CI/CD for data intensive DAGs

Effective CI/CD for SparkOperator

Data Management Layer role in CI/CD process

Topics for the next lecture….

Automation of CI/CD:

Deployment DAG is a separate lecture

Dags migration from research to production and vice versa.

Shameless Promotion
● July 14, Achieving Airflow observability

with Databand by Josh Benamram

● July 17, Data Observability by Evgeniy

Shulman

https://airflowsummit.org/sessions/achieving-observability-with-databand/
https://airflowsummit.org/sessions/achieving-observability-with-databand/
https://airflowsummit.org/sessions/achieving-observability/

Thanks you!

