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About Me
● Founder and  CPO at Databand.ai
● Background in Machine Learning
● Working with data from 2008

● In my spare time:
○ Proud father of 2 daughters.  
○ Run, Hike 



My Nightmares 😱 

● Junior Engineer push new code -> Spark cluster stalled.     
● Senior Engineer push new code -> Overwrite  production partition. Took 24 

hours to recreate. 
● New Spark Operator introduced new version of JAR, the rest of DAGs has failed. 

Ruined a weekend while discovering and fixing 
● Partner change data format. Discovered after 3 month 

   

 



I had this kind of issues daily …. 

● But, I do not want to spent all my money on sleeping pills  😄
● I also do not want my weekend ruined  🏕
● -> I want to create an environment where every change can be tested end to end 

CI/CD pipeline for my DAGs

   

 



What is CI/CD

Dev Staging Production

● Integration
● Stress 
● Regressions

CI/CD Pipeline == End to End Automation



CI/CD for Data DAGs. Spark Operator

● Spark is a de-facto standard in Data Processing
●  Spark - A good example of Data intensive operator 

(applicable for ..PythonOperator, …)
● Spark is the most used tool by Airflow Community:

○ Spark Operator,
○ EmrStep Operator,
○ Dataproc Operator,
○ Databricks Operator



CI/CD

● Business Logic
● DAG code  - is it wiring or 

business logic?
● Testing DAG structure... 

We want CI/CD → running END TO END! 



SparkSubmitOperator

● Spark Cluster selector (conn_id)
● Spark Job Configuration

○ Python/Java Dependencies
○ Resources

●  Spark CLI 



Execution Isolation: Cluster Environments
● Production - final code
● Staging

○ Multiple Version
○ Custom Resources

● →  Parametrize JAR/PY Locations 
● →  For example, use git commit

Rendered Operator Example



What about Data?
No batteries included! 
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Requirements 
for Data intensive DAG CI/CD
● Data inputs/outputs isolation for every CI/CD cycle

○ You want every feature in separate area, 
○ Sometime you don’t want to start every time from scratch 

● No unexpected side effects ( people connects jobs to different systems/DB/Files) 

● Being able to inject different data into your pipeline ( small/big/production/errors)
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Simple: Jinja + xCom  



Library of Jinja Macros  

● Create your own JINJA plugin
● Register it to Airflow macros JINJA framework



Custom Operator

Benefits:
● Check inputs before running
● Serialize outputs  automatically
● Automatic wiring of Task

-> Full control over inputs and outputs



Now you can!
● Run iterations on CI/CD

● Validate DAGS with different DATA 

● Inject data with errors! ( Chaos Monkey for Data!)

● Reuse Same clusters for different versions   

● Enable End Users to run Regressions on their own! 

● Multiple REGRESSIONS at all stages(dev,int,stg,prd)  -> Successful CI/CD process! 



References and Next Steps

● AIP-31: The initial solution

● AIP-<>  More to come

● dbnd-airflow - extension that does data management on it’s own

https://github.com/databand-ai/dbnd


Recap

What’s real CI/CD for data intensive DAGs

Effective CI/CD for SparkOperator

Data Management Layer role in CI/CD process



Topics for the next lecture…. 

Automation of CI/CD:

Deployment DAG is a separate lecture

Dags migration from research to production and vice versa.



Shameless Promotion
● July 14, Achieving Airflow observability 

with Databand by Josh Benamram

● July 17, Data Observability by Evgeniy 

Shulman

https://airflowsummit.org/sessions/achieving-observability-with-databand/
https://airflowsummit.org/sessions/achieving-observability-with-databand/
https://airflowsummit.org/sessions/achieving-observability/


Thanks you!


