%4 <? Production

K : Docker

3 |

il @ & mage for
V&

Vo R Apache
Polidear Airflow

% <? Production
O 4 Container

I
mage for

V. & o Apache
Polideas Airflow

Airflow Summit 2020 - 14.07.2020

M.

"y

Jarek Potiuk

Apache Airflow:
PMC Member and Committer

Polidea:
Principal Software Engineer
(ex-CTO)

Airflow Summit:
Co-Organizer: Content (Lead)

@higrys

Polidea

Intro

Polidea

Intro

What questions will be answered?

Context

o What container images are and why there are important ?

Status

o How it looked like so far ?

o How it is going to look like now ?
Internals

o What is in the image?

o How we test the image?
Usage

o How to extend Airflow Image?

o How to customize Airflow Image?

o How you can use the Image?
Future

o What’s next?

"y

Polidea

Intro

What this talk is NOT about?

e Basic container image knowledge
O https://docker-curriculum.com/
e Details of Cl container image of Airflow
o https://qithub.com/apache/airflow/blob/master/IMAGES.rst

e Details of how Kubernetes Airflow integrate

o “Airflow on Kubernetes” by Michael Hewitt
https://www.crowdcast.io/e/airflowsummit/6
e Details on deploying Airflow with the image

"y

Polidea

https://docker-curriculum.com/
https://github.com/apache/airflow/blob/master/IMAGES.rst
https://www.crowdcast.io/e/airflowsummit/6

Intro

Who is the talk for?

e You want to deploy Airflow using container images
e You want to contribute to Airflow in Devops area
e You want to learn about best practices of using Airflow Containers

e You are a curious person that want to learn something new

"y

Polidea

Container
Images

Context

Polidea

Context

What is a container ?

e Standard unit of software.
o OCI: https://opencontainers.org/
e Packages code and its dependencies
e Lightweight execution package of software

e (Container images - binary packages

<o

\m

Container

R

\mt

Container image

"y

Polidea

Context

Container # Docker

e Docker is a command line tool
o Building, Running, Sharing containers

e Docker Engine runs containers

e Alternatives: rkt, containerd, runc, podman, Ixc, ...

e DockerHub.com is popular container registry

e Alternatives: GitHub, GCR, ECR, ACR

Container management CLI

Container execution
engine

Container registry

"y

Polidea

Context: What is Container file

e Specify base image
e Run commands

e Copy files

e Set working directory
e Define entrypoint

e Define default command

FROM ubuntu:18.04
COPY . /app
RUN make /app && make install

WORKDIR /bin/project
ENTRYPOINT ["/bin/project”]
CMD ["--help"]

"y

FS Layers

Polidea

Context: Container Lifecycle: Build

Container execution
engine
A Build @]
Container Image file Container

(Dockerfile) image

Container registry

"y

Polidea

Context: Container Lifecycle: Run

Container Image file
(Dockerfile)

Container
image

Container registry

"y

Polidea

Context: Container Lifecycle: Push

Container Image file
(Dockerfile)

"y

Container execution
engine

Push

—

N

Jiriit

Container
image

Container registry

Polidea

Context: Container Lifecycle: Pull

Container Image file
(Dockerfile)

"y

Container execution
engine

% Pull

Container
image

Container registry

Polidea

Context

Why containers are important?

Predictable, consistent development & test environment

Predictable, consistent execution environment

Lightweight but isolated: sandboxed view of the OS isolated from others
Build once: run anywhere

Kubernetes runs containers natively

Bridge: “Development -> Operations”

"y

Polidea

http://www.youtube.com/watch?v=9Civfrn25GI

Container
Images
Status

Polidea

"y

Status

History of Containers in Airflow: CI

e Used for Cl for > 2 years: Gerardo Curiel

e Optimized and incorporated by Breeze 1.5 years ago or so
e Docker Compose as execution engine

e Slimmed down recently (Thanks Ash!)

e Optimized for development use

Polidea

Status

History of Containers in Airflow: Prod

e Puckel image created by Matthieu "Puckel_" Roisil (Thanks Matthieu!)

o Used by many users in production

o Used by the publicly available Helm Chart (not managed by community)
e Official Production Image (managed by community)

o Alpha Quality community image in 1.10.10

o Beta Quality community image in 1.10.11 (now!)

"y

Polidea

Status

State of the Official Production image

e Beta Quality - usable for production

e Most important feedback incorporated

e Already used in production

e Public Helm Chart switched to the Official Production Image

e Community Helm Chart (donated by Astronomer!) uses it for testing

e Stable version in v1-10-stable, development in master

uy

Polidea

Container
Images
Internals

Polidea

Internals: DockerHub releases

Released image

e ~ 210 MB compressed size
Python: 2.7, 3.5, 3.6, 3.7, 3.8
1.10.11 = Python 3.6
manually released
using “1.10.11” tag
latest = 1.10.11
docker pull apache/airflow

@ & Search for great content (e.g, mysl)

Repositories apache / airflow

Explore Repositories potiuk ~

General Tags Builds Timeline Permissions Webhooks Settings
ction - Q. 1.10.11 X Sortby Latest v
Q_ Search for great content (e.g., mysq|)
IMAGE
1.10.11 docker pull apache/airflow:1.10.11 (] Repositories apache / airflow
Last updated a day ago by potiuk
General Tags Builds Timeline
DIGEST OS/ARCH COMPRESSED SIZE @
5b43a4b820eb d6d 208.86 MB
i S Q latest X
IMAGE VAGE
1.10.11-python2.7 docHer pull apache/airflow:1.10.11-pythe (] [latest]
Last updated a day ago by potiuk Last updated a day ago by potiuk
DIGEST OS/ARCH COMPRESSED SIZE @ GES: - ' ;
5b43a4b820 inux/amdé4
015eaac4fode linux/amd64 21338 MB S inedam
IMAGE
1.10.11-python3.5 docker pull apache/airflow:1.10.11-pythc IF]
Last updated a day ago by potiuk
DIGEST OS/ARCH COMPRESSED SIZE @
d30b4d7a7020 linux/amd64 213.65MB
IMAGE
1.10.11-python3.7 docker pull apache/airflow:1.10.11-pythc I[]
Last updated a day ago by potiuk
DIGEST OS/ARCH COMPRESSED SIZE @
a0032be900db linux/amd64 210.01 MB
IMAGE
1.10.11-python3.6 docker pull apache/airflow:1.10.11-pythc [[]
Last updated a day ago by potiuk
DIGEST OS/ARCH COMPRESSED SIZE ®
5b43a4b820eb linux/amd64 208.86 MB

Permissions

4
|

£)\
Explore Repositories potiuk ~ (

Webhooks ~ Settings

Sortby A-Z

docker pull apache/airflow:latest [m]

COMPRESSED SIZE®
208.86 MB

Polidea

Internals: Releasing the image

Container Image or Container File ?

e Apache Software Foundation releases sources, not binaries

e Binaries can only be released for convenience of users

e Binaries must be rebuildable from released sources (PyPI, for example)
e Users should be able to build the software they need

e Should we release Container Image, Container File, or both?

"y

Polidea

Internals

Features of the production image

Optimised for size (Compressed: ~230MB, ~800 MB on disk)
Python 3.6, 3.7, 3.8 (2.0 and 1.10.%) , 2.7, 3.5 (1.10.%)
Extras installed:
o async,aws,azure,celery,dask,elasticsearch,gcp,kubernetes,
mysql,postgres,redis,slack,ssh,statsd,virtualenv
OpenShift compatible (dynamic uid allocation)

Gunicorn using shared memory (optimised parallelism)

"y

Polidea

Internals

Features of the production image file

e Builds optimised image
e Highly customizable (ARGS)

e Multi segmented (build + main)

Po

"y

lidea

Internals: build image

Build image
e Pass arguments
e Define variables
e Install apt dependencies (with dev ones)
e Install airflow (sources, pip, github): —-user
e Include constraints
e Transpile website (yarn)
e ~700 MB compressed, ~2GB on disk
e Root user

master-python3.6-build docker pull apacherairflow:master-pytho [

Last updated 2 hours ago by apache

175dc07099d3 linux/amdé64 662.04 MB

ARG AIRFLOW_VERSIO
ARG AIRFLOW_EXTRAS="a ure,celery,d earch, gep, kubernete sql, postgres
#
HHHHHHHH R R
This is the build image where we build all dependencies
HARAHHHAHHHHAH AR AR AR
FROM ${PYTHON_BASE_IMAGE} as airflow-build-image
ARG PYTHON_BASE_IMAGE
ENV PYTHON_BASE_IMAGE=${PYTHON_BASE_IMAGE}
...
RUN apt-get update \
&& apt-get install -y --no-install-recommends \

apt-transport-https \

apt-utils \

build-essential \

freetds-bin \

freetds-dev \
&& apt-get autoremove -yqq --purge \
&& apt-get clean \
&& rm -rf "/var/lib/apt/li.

pip install --user \
“ github.co
constraint \

"ht / .github

&& pip uninstall --yes apache-airflow;

ARG CONSTRAINT_REQUIREMENTS=
ENV CONSTRAINT_REQUIREMENTS=${CONSTRAINT_REQUIREMENTS}

equirement

WORKDIR /opt/airflow

hadolint ignore=DL3628
ADD "${CONSTRAINT_ /requirements.txt
RUN pip install IRFLOW_INSTALL_SOUR AIRFLOW_EXTRAS
--constraint /requirements.txt

AIRFLOW_SITE_PACKAGE="/ local/lib/python${PYTHON JOR_MINOR_V
if [[-f & } n" 11; then \

json” 11; then \
WWW_DIR:
fi; \
if [[${WWW_DIR
yarn --cwd "S${WWW_DIR}" install --frozen-lockfile
cwd "${WWW_DIR}" run pro
WWW_DIR les”

\

Polidea

Internals: main image

Main image

Pass arguments/ define variables
Install apt dependencies (without dev!)
Add user

Uses root group (OpenShift)

Copy(!) Airflow

Copy DAGs (optionally)

Copy entrypoint and clean-logs
Access to /etc/passwd

Embed dags (for tests)

Optimized Gunicorn parallelism

Set working dir

Exposes port

Set user

Entrypoint and command

~230 MB compressed, ~800MB on disk

master-python3.6 docker pull apache/airflow:master-pytho [[]
Last updated 2 hours ago by apache

ba50cd9e3d4e linux/amdé4 231.56 MB

FHBHH R
This is the actual Airflow image - much smaller than the build one. We copy
installed Airflow and all it's dependencies from the build image to make it smaller.
B R R G e e
FROM ${PYTHON_BASE_IMAGE} as main
SHELL ["/bin/basl "-o", "pipefail",
...
ARG PYTHON_BASE_IMAGE

PYTHON_BASE__IMAGE=${PYTHON_BASE_IMAGE}

"y

apt-get update \
&& apt-get install -y --no-install-recommends \
apt-transport-https \
apt-utils \
ca-certificates \
curl \

addgroup --gid "${AIRFLOW_GID}" "airflow" && \
adduser --quiet "airfloy --uid "${AIRFLOW_| 5
--gid "${AIRFLOW_GID}" \
--home "${AIRFLOW_USER_HOME_DIR}"

own=airflow:root --from=airflow-build-image /root/.local "${AIRFLOW_USER_HOME_DIR

COPY scripts/prod/entrypoint_prod.sh /entrypoint
COPY scripts/prod/clean-logs.sh /clean-logs

ARG EMBEDDED_DAGS="empty"
COPY --chown=airflow:root ${EMBEDDED_DAGS}/ ${AIRFLOW_HOME}/dags

Make /etc/passwd root-group-writeable so that user can be dynamically added by OpenShift
See https://github.com/apache/airflow/issues/9248

RUN chmod g=u /etc/passwd

ENV PATH="${AIRFLOW_USER_HOME_DIR}/.local/bin:${PATH}"
ENV GUNICORN_CMD_ARGS= worker-tmp-dir /dev/shm"

WORKDIR ${AIRFLOW_HOME}
EXPOSE 8080
USER ${AIRFLOW_UID}

ENTRYPOINT ["/usr/bin/ ", "-=", "/entrypoint"]
CMD ["--help"]

Polidea

Internals: entrypoint

Creates user dynamically if
missing (OpenShift)

Fallbacks to sqlite metadata
Waits until metadata DB is up
Waits until broker DB is up

If “bash” or “python” -> runs
command

Else execute airflow command

In case the user is not locally created we automatically create it in /etc/passwd
This is to handle OpenShift case where random UIDs are used
if ! whoami &> /dev/null; then

if [[-w /etc/passwd]]; then

echo "${USER_NAME:-default}:x:8(id -u):0:${USER_NAME:-default} user:${AIRFLOW_USER_HOME_DIR}:/sbin/nologin" \

>> /etc/passwd
i
export HOME="${AIRFLOW_USER_HOME_DIR}"
fi

if no DB configured - use sqlite db by default
AIRFLOW__CORE__SQL_ALCHEMY_CONN="${AIRFLOW__CORE__SQL_ALCHEMY_CONN:="sqlite:///$S{AIRFLOW_HOME}/airflow.db"}"
verify_db_connection "${AIRFLOW__CORE__SQL_ALCHEMY_CONN}"
AIRFLOW__CELERY__BROKER_URL=${AIRFLOW__CELERY__BROKER_URL:=}
if [[-n S${AIRFLOW__CELERY__BROKER_URL}]] && \

[[S${AIRFLOW_COMMAND} =~ A(scheduler|worker|flower)$]]; then

verify_db_connection "${AIRFLOW__CELERY__BROKER_URL}"
fi

if [[$S{AIRFLOW_COMMAND} ==
shift
exec "/bin/bash" "${@}"
elif [[${AIRFLOW_COMMAND} == "python"]]; then
shift
exec "python" "${@}"

fi

Run the command
exec airflow "${@}"

Polidea

Internals: .dockerignore

Ignores everything by default

You must explicitly include what you
want by “!”

You can further exclude specific
subdirectories/patterns

We generate a lot of stuff in airflow
sources

Sending big context to Docker engine
takes time

You avoid accidental inclusion of
unneeded artifacts

NOTE! This docker ignore uses recommended technique

Where everything is excluded by default and you deliberately

Add only those directories/files you need. This is very useful

To make sure that Docker context is always the same on any machine
So that generated files are not accidentally added to the context
This allows Docker's "COPY .° to behave in predictable way

Ignore everything

Allow only these directories
lairflow

! common

!dags

'dev

!docs

!licenses

!metastore_browser

!scripts

!tests

HFoows

Now - ignore unnecessary files inside allowed directories
This goes after the allowed directories

Git version is dynamically generated
airflow/git_version

Exclude static www files generated by NPM
airflow/www/static/coverage

airflow/www/static/dist

airflow/www/node_modules

Exclude static www_rbac files generated by NPM in v1-18-test
airflow/www_rbac/static/coverage

airflow/www_rbac/static/dist

airflow/www_rbac/node_modules

Exclude link to docs
airflow/www/static/docs

Exclude python generated files
*%/__pycache__/

*% /% py[cod]

**/*8py.class

**/.pytest_cache/

*%/env/

"y

Polidea

Internals

How we test the image ?

The image and chart are part of Apache Airflow monorepo

We build the image with every PR (dependencies)

We use it in the Kubernetes tests for master (Helm Chart integration)
We will use released images in the Helm Chart (backward compatibility)

We will add more tests for various Helm configurations

"y

Polidea

Container
Images
Usage

Polidea

4.,
[|
Usage: Extending Airflow image - use released image

apache/airflow:1.10.11
docker build . -t yourcompany/airflow:1.10.11-BUILD ID

4

N

FROM apache/airflow:1.10.11

change to root user temporarily
USER root

Container registry

Optionally install your own apt dependencies
RUN apt-get update \
&& apt-get install -y --no-install-recommends \

emacs \
&& apt-get autoremove -yqq --purge \

&& apt-get clean \ ¢
&& rm -rf "/var/lib/apt/lists/*"

Change back to the airflow user . .

USER airflow

Container
Add extra dependencies image
RUN pip install --user numpy

yourcompany/airflow:1.10.11-BUILD_ID

Embed DAGs (Optionally) - DAGs can be baked in but also
they can be git-synced or mounted from shared volume
COPY --chown=airflow:root dags-folder ${AIRFLOW_HOME}/dags/

Polidea

Usage

Extending image - Pros & Cons

Pros

e Use released images
e Simple build command
e Own Dockerfile

e No need for Airflow sources

Cons

Potentially bigger size
Predefined extras only
Installs limited set of python

dependencies

"y

Polidea

Usage: Customising Airflow image - default docker build

git clone git@github.com:apache/airflow.git

docker build

cd airflow

git checkout v1-10-stable

Same as apache/airflow:1.10.11
e Python 3.6
e Default extras
e No additional dependencies

"y

T

[l

Container
image

| Polidea

Usage: Customising Airflow image - use build args

e Installs from PyPi ==1.10.11
e Additional airflow extras, dev, runtime deps ...

e Does not use local sources (can be run from master including entrypoint!)

docker build . \
--build-arg PYTHON_BASE_IMAGE="python:3.7-slim-buster" \
--build-arg PYTHON_MAJOR_MINOR_VERSION=3.7 \
--build-arg AIRFLOW_INSTALL_SOURCES="apache-airflow" \
--build-arg AIRFLOW_INSTALL_VERSION="==1.10.11" \
--build-arg CONSTRAINT_REQUIREMENTS=\

"https://raw.githubusercontent.com/apache/airflow/1.10.11/requirements/requirements-python3.7.txt" \
--build-arg AIRFLOW_SOURCES_FROM="empty" \

--build-arg AIRFLOW_SOURCES_TO="/empty" \

--build-arg ADDITIONAL_AIRFLOW_EXTRAS="7jdbc"

--build-arg ADDITIONAL_DEV_DEPS="gcc g++"

--build-arg ADDITIONAL_RUNTIME_DEPS="default-jre-headless"

"y

Polidea

Usage: Image Customization options

Choose Base image (python)
Install Airflow from PyPI

Install from GitHub branch/tag
Install additional extras

Install additional python deps
Install additional apt dev deps
Install additional apt runtime deps
Choose different UID/GID

Choose different AIRFLOW_HOME
Choose different HOME dir

Build Cassandra driver concurrently

See IMAGES.rst in the Airflow repo.

e following build arguments (--build-arg in docker build command) can be used for production images:

Build argument

PYTHON_BASE_IMAGE

PYTHON_MAJOR_MINOR_VERSION
AIRFLOW_VERSION
AIRFLOW_ORG

AIRFLOW_REPO
AIRFLOW_BRANCH

AIRFLOW_GIT_REFERENCE

REQUIREMENTS_GIT_REFERENCE

AIRFLOW_EXTRAS
ADDITIONAL_AIRFLOW_EXTRAS
ADDITIONAL_PYTHON_DEPS
ADDITIONAL_DEV_DEPS
ADDITIONAL_RUNTIME_DEPS

EMBEDDED_DAGS

AIRFLOW_HOME
AIRFLOW_UID

AIRFLOW_GID

AIRFLOW_USER_HOME_DIR

PIP_VERSION

CASS_DRIVER_BUILD_CONCURRENCY

Default value

python:3.6-

slim-buster
3.6
2.0.0.deve
apache
apache/airflow
master

master

master

(see Dockerfile)

empty

/opt/airflow
50000

50000

/home/airflow
() 2

8

Description

Base python image

major/minor version of Python (should match base image)

version of Airflow

Github organisation from which Airflow is installed (when installed from repo)
the repository from which PIP dependencies are pre-installed

the branch from which PIP dependencies are pre-installed

reference (branch or tag) from Github repository from which Airflow is installed
(when installed from repo)

reference (branch or tag) from Github repository from which requirements are
downloaded for constraints (when installed from repo).

Default extras with which airflow is installed

Optional additional extras with which airflow is installed

Optional python packages to extend the image with some extra dependencies
additional apt dev dependencies to install

additional apt runtime dependencies to install

Folder containing dags embedded into the image in the
${AIRFLOW_HOME}/dags dir

Airflow's HOME (that's where logs and sqlite databases are stored)

Airflow user UID

Airflow group GID. Note that most files created on behalf of airflow user
belong to the root group (0) to keep OpenShift Guidelines compatibility

Home directory of the Airflow user
version of PIP to use

Number of processors to use for cassandra PIP install (speeds up installing in
case cassandra extra is used).

Polidea

Usage: It’s a Breeze to build images

e Breeze - development and test
environment

e Supports building production image

e Auto-complete of options

e New Breeze video showing building

production images:

https://s.apache.org/airflow-breeze

./breeze build-image --help

See BREEZE.rst in the Airflow repo

"y

./breeze build-image --production-image --additional-extras "jira"

./breeze build-image --production-image --python 3.7 \

--additional-extras "jira"

./breeze build-image --production-image \

--additional-python-deps "torchio==0.17.10"

./breeze build-image --production-image \

--additional-dev-deps "libasound2-dev" \
--additional-runtime-deps "libasound2"

./breeze build-image --production-image \

--additional-extras "jira" --install-airflow-version="1.16.11"

Polidea

https://s.apache.org/airflow-breeze

Usage

Customising image - Pros & Cons

Pros Cons
e Highly optimized for size e Need access to airflow sources
e Build image from sources e Complex build command
(security reviews!) e Need to understand internals

e (Can add any extras
e (Can add any dependency
e Breeze build commands

e Works from master and 1.10.*

"y

Polidea

Usage

"y

Why not eat and have cake ?

git clone git@github.com:apache/airflow.git

cd airflow ./breze build-image --production-image --additional-extras "jira" \

--install-airflow-version "1.10.11"
git checkout vi1-1@-stable

When dependencies
change

When DAGs
a change base-image-for-your-company:1.10.11-2020-07-14

ﬁ ' FROM base-image-for-your-company:1.10.11-2620-07-14 a
COPY --chown airflow:root dags-folder "${AIRFLOW_HOME}/dags" .m

Runtime
Container Base
image Container

image

Polidea

Usage

uy

How to deploy the images ?

Docker and Docker-Compose - hot recommended for production
Managed Container Services

o Managed: Amazon ECS, Google Container on VMs, Azure Container Instances
Kubernetes on-Prem:

o Helm Chart

o Airflow Operator (not recommended yet)
Managed Kubernetes: Amazon EKS, Google GKE, Azure AKS
OpenShift (also Kubernetes)

Polidea

Container
Images

Future

Polidea

"y

Future

What is the future for Airflow images?

° It won’t change too much !
° Better automated testing via Helm Chart
e Automated releases for 2.0
e ARM support might be the big one. (Apple Mac OS)
° Official Docker Compose
e Smaller features (depends on feedback and expectations):
o ON BUILD support ?
o AIRFLOW__CORE__SQL_ALCHEMY_CONN_CMD, AIRFLOW__CELERY__BROKER_URL_CMD support ?

o Automated user creation ?

Polidea

"y

Polidea

Thanks!

hello@polidea.com

Polidea

