
Production
Docker
Image

for
Apache
Airflow

Airflow Summit 2020 - 14.07.2020

Production
Container
Image

for
Apache
Airflow

Airflow Summit 2020 - 14.07.2020

Polidea

Logo or mockup

Hi!

Jarek Potiuk

Apache Airflow:
PMC Member and Committer

Polidea:
Principal Software Engineer
(ex-CTO)

Airflow Summit:
Co-Organizer: Content (Lead)

@higrys

Polidea

Intro

Polidea

● Context
○ What container images are and why there are important ?

● Status
○ How it looked like so far ?
○ How it is going to look like now ?

● Internals
○ What is in the image?
○ How we test the image?

● Usage
○ How to extend Airflow Image?
○ How to customize Airflow Image?
○ How you can use the Image?

● Future
○ What’s next?

What questions will be answered?

Intro

Polidea

● Basic container image knowledge
○ https://docker-curriculum.com/

● Details of CI container image of Airflow
○ https://github.com/apache/airflow/blob/master/IMAGES.rst

● Details of how Kubernetes Airflow integrate

○ “Airflow on Kubernetes” by Michael Hewitt
https://www.crowdcast.io/e/airflowsummit/6

● Details on deploying Airflow with the image

What this talk is NOT about?

Intro

https://docker-curriculum.com/
https://github.com/apache/airflow/blob/master/IMAGES.rst
https://www.crowdcast.io/e/airflowsummit/6

Polidea

● You want to deploy Airflow using container images

● You want to contribute to Airflow in Devops area

● You want to learn about best practices of using Airflow Containers

● You are a curious person that want to learn something new

Who is the talk for?

Intro

Polidea

Container
Images

Context

Polidea

● Standard unit of software.

○ OCI: https://opencontainers.org/

● Packages code and its dependencies

● Lightweight execution package of software

● Container images - binary packages

What is a container ?

Context

Container

Container image

Polidea

● Docker is a command line tool

○ Building, Running, Sharing containers

● Docker Engine runs containers

● Alternatives: rkt, containerd, runc, podman, lxc, …

● DockerHub.com is popular container registry

● Alternatives: GitHub, GCR, ECR, ACR

Container ≠ Docker

Context

Container execution
engine

Container registry

Container management CLI

Polidea

Context: What is Container file

● Specify base image

● Run commands

● Copy files

● Set working directory

● Define entrypoint

● Define default command

FS Layers

Polidea

Context: Container Lifecycle: Build

Container
image

Container registry

Container execution
engine

Container Image file
(Dockerfile)

Build

Polidea

Context: Container Lifecycle: Run

Container
image

Container registry

Container execution
engine

Container Image file
(Dockerfile)

Run

Polidea

Context: Container Lifecycle: Push

Container
image

Container registry

Container execution
engine

Container Image file
(Dockerfile)

Push

Polidea

Context: Container Lifecycle: Pull

Container
image

Container registry

Container execution
engine

Container Image file
(Dockerfile)

Pull

Polidea

● Predictable, consistent development & test environment

● Predictable, consistent execution environment

● Lightweight but isolated: sandboxed view of the OS isolated from others

● Build once: run anywhere

● Kubernetes runs containers natively

● Bridge: “Development -> Operations”

Why containers are important?

Context

http://www.youtube.com/watch?v=9Civfrn25GI

Polidea

Container
Images

Status

Polidea

● Used for CI for > 2 years: Gerardo Curiel

● Optimized and incorporated by Breeze 1.5 years ago or so

● Docker Compose as execution engine

● Slimmed down recently (Thanks Ash!)

● Optimized for development use

History of Containers in Airflow: CI

Status

Polidea

● Puckel image created by Matthieu "Puckel_" Roisil (Thanks Matthieu!)

○ Used by many users in production

○ Used by the publicly available Helm Chart (not managed by community)

● Official Production Image (managed by community)

○ Alpha Quality community image in 1.10.10

○ Beta Quality community image in 1.10.11 (now!)

History of Containers in Airflow: Prod

Status

Polidea

● Beta Quality - usable for production

● Most important feedback incorporated

● Already used in production

● Public Helm Chart switched to the Official Production Image

● Community Helm Chart (donated by Astronomer!) uses it for testing

● Stable version in v1-10-stable, development in master

State of the Official Production image

Status

Polidea

Container
Images

Internals

Polidea

Internals: DockerHub releases

Released image
● ~ 210 MB compressed size
● Python: 2.7, 3.5, 3.6, 3.7, 3.8
● 1.10.11 = Python 3.6
● manually released
● using “1.10.11” tag
● latest = 1.10.11
● docker pull apache/airflow

Polidea

● Apache Software Foundation releases sources, not binaries

● Binaries can only be released for convenience of users

● Binaries must be rebuildable from released sources (PyPI, for example)

● Users should be able to build the software they need

● Should we release Container Image, Container File, or both?

Container Image or Container File ?

Internals: Releasing the image

Polidea

● Optimised for size (Compressed: ~230MB, ~800 MB on disk)

● Python 3.6, 3.7, 3.8 (2.0 and 1.10.*) , 2.7, 3.5 (1.10.*)

● Extras installed:

○ async,aws,azure,celery,dask,elasticsearch,gcp,kubernetes,

mysql,postgres,redis,slack,ssh,statsd,virtualenv

● OpenShift compatible (dynamic uid allocation)

● Gunicorn using shared memory (optimised parallelism)

Features of the production image

Internals

Polidea

● Builds optimised image

● Highly customizable (ARGs)

● Multi segmented (build + main)

Features of the production image file

Internals

Polidea

Internals: build image

Build image
● Pass arguments
● Define variables
● Install apt dependencies (with dev ones)
● Install airflow (sources, pip, github): --user
● Include constraints
● Transpile website (yarn)
● ~700 MB compressed, ~2GB on disk
● Root user

(side comment)

~ 730 modules
~ 360 MB

Install to ${HOME}/.local

Polidea

Internals: main image

Main image
● Pass arguments/ define variables
● Install apt dependencies (without dev!)
● Add user
● Uses root group (OpenShift)
● Copy(!) Airflow
● Copy DAGs (optionally)
● Copy entrypoint and clean-logs
● Access to /etc/passwd
● Embed dags (for tests)
● Optimized Gunicorn parallelism
● Set working dir
● Exposes port
● Set user
● Entrypoint and command
● ~230 MB compressed, ~800MB on disk
●

Polidea

Internals: entrypoint

● Creates user dynamically if
missing (OpenShift)

● Fallbacks to sqlite metadata
● Waits until metadata DB is up
● Waits until broker DB is up
● If “bash” or “python” -> runs

command
● Else execute airflow command

Polidea

Internals: .dockerignore

● Ignores everything by default
● You must explicitly include what you

want by “!”
● You can further exclude specific

subdirectories/patterns
● We generate a lot of stuff in airflow

sources
● Sending big context to Docker engine

takes time
● You avoid accidental inclusion of

unneeded artifacts

Polidea

● The image and chart are part of Apache Airflow monorepo

● We build the image with every PR (dependencies)

● We use it in the Kubernetes tests for master (Helm Chart integration)

● We will use released images in the Helm Chart (backward compatibility)

● We will add more tests for various Helm configurations

How we test the image ?

Internals

Polidea

Container
Images

Usage

Polidea

Usage: Extending Airflow image - use released image

Container
image

Container registry

apache/airflow:1.10.11
docker build . -t yourcompany/airflow:1.10.11-BUILD_ID

yourcompany/airflow:1.10.11-BUILD_ID

Polidea

Pros

● Use released images

● Simple build command

● Own Dockerfile

● No need for Airflow sources

Extending image - Pros & Cons

Usage

Cons

● Potentially bigger size

● Predefined extras only

● Installs limited set of python

dependencies

Polidea

Usage: Customising Airflow image - default docker build

Container
image

Same as apache/airflow:1.10.11
● Python 3.6
● Default extras
● No additional dependencies

Polidea

Usage: Customising Airflow image - use build args

● Installs from PyPi ==1.10.11

● Additional airflow extras, dev, runtime deps …

● Does not use local sources (can be run from master including entrypoint!)

Polidea

Usage: Image Customization options

● Choose Base image (python)

● Install Airflow from PyPI

● Install from GitHub branch/tag

● Install additional extras

● Install additional python deps

● Install additional apt dev deps

● Install additional apt runtime deps

● Choose different UID/GID

● Choose different AIRFLOW_HOME

● Choose different HOME dir

● Build Cassandra driver concurrently

See IMAGES.rst in the Airflow repo.

Polidea

Usage: It’s a Breeze to build images

● Breeze - development and test

environment

● Supports building production image

● Auto-complete of options

● New Breeze video showing building

production images:

https://s.apache.org/airflow-breeze

● ./breeze build-image --help

See BREEZE.rst in the Airflow repo

https://s.apache.org/airflow-breeze

Polidea

Pros

● Highly optimized for size

● Build image from sources

(security reviews!)

● Can add any extras

● Can add any dependency

● Breeze build commands

● Works from master and 1.10.*

Customising image - Pros & Cons

Usage

Cons

● Need access to airflow sources

● Complex build command

● Need to understand internals

Polidea

Usage

Why not eat and have cake ?

Runtime
Container

image
Base

Container
image

When dependencies
change

When DAGs
change base-image-for-your-company:1.10.11-2020-07-14

Polidea

● Docker and Docker-Compose - not recommended for production

● Managed Container Services

○ Managed: Amazon ECS, Google Container on VMs, Azure Container Instances

● Kubernetes on-Prem:

○ Helm Chart

○ Airflow Operator (not recommended yet)

● Managed Kubernetes: Amazon EKS, Google GKE, Azure AKS

● OpenShift (also Kubernetes)

How to deploy the images ?

Usage

Polidea

Container
Images

Future

Polidea

● It won’t change too much !

● Better automated testing via Helm Chart

● Automated releases for 2.0

● ARM support might be the big one. (Apple Mac OS)

● Official Docker Compose

● Smaller features (depends on feedback and expectations):

○ ON BUILD support ?

○ AIRFLOW__CORE__SQL_ALCHEMY_CONN_CMD, AIRFLOW__CELERY__BROKER_URL_CMD support ?

○ Automated user creation ?

What is the future for Airflow images?

Future

Polidea

Q&A

Polidea

Thanks!

hello@polidea.com

