Looking for a way to streamline your data workflows and master the art of orchestration? As we navigate the complexities of modern data engineering, Airflow’s dynamic workflow and complex data pipeline dependencies are starting to become more and more common nowadays. In order to empower data engineers to exploit Airflow as the main orchestrator, Airflow Datasets can be easily integrated in your data journey.
This session will showcase the Dynamic Workflow orchestration in Airflow and how to manage multi-DAGs dependencies with Multi-Dataset listening.
We’ll take you through a real-time data pipeline with Pub/Sub messaging integration and dbt in Google Cloud environment, to ensure data transformations are triggered only upon new data ingestion, moving away from rigid time-based scheduling or the use of sensors and other legacy ways to trigger a DAG.