The journey from ML model development to production deployment and monitoring is often complex and fragmented. How can teams overcome the chaos of disparate tools and processes? This session dives into how Apache Airflow serves as a unifying force in MLOps. We’ll begin with a look at the broader MLOps trends observed by Google within the Airflow community, highlighting how Airflow is evolving to meet these challenges and showcasing diverse MLOps use cases – both current and future.

Then, Priceline will present a deep-dive case study on their MLOps transformation. Learn how they leveraged Cloud Composer, Google Cloud’s managed Apache Airflow service, to orchestrate their entire ML pipeline end-to-end: ETL, data preprocessing, model building & training, Dockerization, Google Artifact Registry integration, deployment, model serving, and evaluation. Discover how using Cloud Composer on GCP enabled them to build a scalable, reliable, adaptable, and maintainable MLOps practice, moving decisively from chaos to coordination. Cloud Composer (Airflow) has served as a major backbone in transforming the whole ML experience in Priceline.

Join us to learn how to harness Airflow, particularly within a managed environment like Cloud Composer, for robust MLOps workflows, drawing lessons from both industry trends and a concrete, successful implementation.

Priyanka Samanta

Priyanka Samanta, Senior Manager - Data Engineering & ML Platform